Search results for "ITT"

showing 10 items of 20843 documents

A study of the optical effect of plasma sheath in a negative ion source using IBSIMU code

2020

A plasma sheath inside an ion source has a strong focusing effect on the formation of an ion beam from the plasma. Properties of the beam depend on the shape and location of the plasma sheath inside the source. The most accessible experimental data dependent on the plasma sheath are the beam phase space distribution. Variation of beam emittance is a reflection of the properties of the plasma sheath, with minimum emittance for the optimal shape of the plasma sheath. The location and shape of the plasma sheath are governed by complex physics and can be understood by simulations using plasma models in particle tracking codes like IBSimu. In the current study, a model of the D-Pace’s TRIUMF lic…

010302 applied physicsDebye sheathMaterials scienceIon beamPlasmahiukkaskiihdyttimetplasmafysiikka01 natural sciencesIon sourcenegative ion source010305 fluids & plasmassymbols.namesakeplasma sheathPhysics::Plasma Physics0103 physical sciencesPhysics::Space PhysicssymbolsPhysics::Accelerator PhysicsThermal emittanceStrong focusingBeam emittanceAtomic physicsInstrumentationBeam (structure)
researchProduct

Preparation, Characterisation and Dielectric Properties of YBa2Cu3O7-δ/ Insulator-Heterostructures

1996

YBa 2 Cu 3 O 7-δ /insulator/Au-heterostructures on SrTiO 3 or LaAlO 3 substrates were prepared to study the properties of the materials SrTiO 3 , BaTiO 3 and Ceo 2 . X-ray diffraction measurements in Bragg-Brentano geometry show c-axis-oriented growth for the superconductor and the insulators SrTiO 3 and CeO 2 . Typical values for the rocking curve width of the different insulating films are between 0.4° and 0.8°. The highest breakdown fields are measured for the insulator SrTiO 3 with +37.5 kV/mm and -8.8 kV/mm. The permittivity for CeO 2 is independent of applied field and only weakly temperature dependent. This is in contrast to the perovskite type insulators, where the permittivity depe…

010302 applied physicsDiffractionPermittivitySuperconductivityMaterials scienceCondensed matter physicsGeneral Physics and AstronomyMineralogyHeterojunctionInsulator (electricity)02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesCapacitancechemistry.chemical_compoundchemistry[PHYS.HIST]Physics [physics]/Physics archives0103 physical sciencesStrontium titanate0210 nano-technology
researchProduct

Polarization and acoustic properties of barium-modified lead-free potassium–sodium niobate ceramics

2017

The publication costs of this article were covered by the Estonian Academy of Sciences and the University of Tartu.

010302 applied physicsFerroelectricsCeramicsMaterials science010308 nuclear & particles physicsGeneral EngineeringAnalytical chemistryElastic propertieschemistry.chemical_elementRelaxorsBarium01 natural scienceschemistryPotassium sodiumDielectric permittivityvisual_artPolarization0103 physical sciencesvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]CeramicPolarization (electrochemistry)Solid solutionsProceedings of the Estonian Academy of Sciences
researchProduct

Structural, optical, and luminescence properties of ZnO:Ga optical scintillation ceramic

2018

This paper discusses the characteristics of ZnO and ZnO:Ga ceramics fabricated by uniaxial hot pressing. The short-wavelength transmission limit of zinc oxide ceramics is in the 370-nm region; the long-wavelength limit is determined by the free-charge-carrier concentration and lies in the interval from 5 to 9 μm. The total transmittance of such ceramics in the visible and near-IR regions is about 70% when the sample is 0.5 mm thick. The luminescence spectrum is represented by a broad emission band with maximum at 580 nm, having a defect nature. The introduction of 0.03–0.1 mass % gallium into the zinc oxide structure inhibits grain growth and increases the free-charge-carrier concentration …

010302 applied physicsMaterials scienceApplied MathematicsExcitonGeneral EngineeringAnalytical chemistrychemistry.chemical_elementZincHot pressing01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsComputational MathematicsGrain growthchemistryvisual_art0103 physical sciencesTransmittancevisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]CeramicGalliumLuminescenceJournal of Optical Technology
researchProduct

Revision of the freezing concept in relaxor ferroelectrics: the case of Na0.5Bi0.5TiO3-Sr0.7Bi0.2TiO3 solid solutions

2020

Presence of a frequency-independent maximum and a frequency-dependent shoulder in temperature-frequency dependence of dielectric permittivity are characteristic features of NBT-based solid solution...

010302 applied physicsMaterials scienceCondensed matter physicsDielectric permittivityPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Science0103 physical sciences0210 nano-technologySolid solutionFerroelectrics
researchProduct

A new 18 GHz room temperature electron cyclotron resonance ion source for highly charged ion beams

2020

An innovative 18 GHz HIISI (Heavy Ion Ion Source Injector) room temperature Electron Cyclotron Resonance (ECR) ion source (ECRIS) has been designed and constructed at the Department of Physics, University of Jyväskylä (JYFL), for the nuclear physics program of the JYFL Accelerator Laboratory. The primary objective of HIISI is to increase the intensities of medium charge states (M/Q ≅ 5) by a factor of 10 in comparison with the JYFL 14 GHz ECRIS and to increase the maximum usable xenon charge state from 35+ to 44+ to serve the space electronics irradiation testing program. HIISI is equipped with a refrigerated permanent magnet hexapole and a noncylindrical plasma chamber to achieve very stro…

010302 applied physicsMaterials scienceIon beamsyklotronittutkimuslaitteetHighly charged ionchemistry.chemical_elementhiukkaskiihdyttimet01 natural sciences7. Clean energyIon sourceElectron cyclotron resonance010305 fluids & plasmasIonXenonchemistry0103 physical sciencesIrradiationAtomic physicsInstrumentationBeam (structure)
researchProduct

Mechanical properties of macroscopic magnetocrystals

2019

Abstract We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals , were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kin…

010302 applied physicsMaterials scienceIsotropyTorsion (mechanics)02 engineering and technologyBending021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsStress (mechanics)Condensed Matter::Materials ScienceBrittleness0103 physical sciencesUltimate tensile strengthHexagonal latticeComposite material[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]0210 nano-technologyAnisotropyComputingMilieux_MISCELLANEOUS
researchProduct

Rock-salt CdZnO as a transparent conductive oxide

2018

Transparent conducting oxides (TCOs) are widely used in applications from solar cells to light emitting diodes. Here, we show that the metal organic chemical vapor deposition (MOCVD)-grown, rock-salt CdZnO ternary, has excellent potential as a TCO. To assess this compound, we use a combination of infrared reflectance and ultraviolet-visible absorption spectroscopies, together with Hall effect, to determine its optical and electrical transport characteristics. It is found that the incorporation of Zn produces an increment of the electron concentration and mobility, yielding lower resistivities than those of CdO, with a minimum of 1.96 × 10 − 4 Ω · cm for a Zn content of 10%. Moreover, due to…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Band gapAnalytical chemistry02 engineering and technologyChemical vapor deposition021001 nanoscience & nanotechnology01 natural scienceslaw.inventionlaw0103 physical sciencesMetalorganic vapour phase epitaxy0210 nano-technologyTernary operationAbsorption (electromagnetic radiation)Deposition (law)Transparent conducting filmLight-emitting diodeApplied Physics Letters
researchProduct

Assembly of microparticles by optical trapping with a photonic crystal nanocavity

2012

International audience; In this work, we report the auto-assembly experiments of micrometer sized particles by optical trapping in the evanescent field of a photonic crystal nanocavity. The nanocavity is inserted inside an optofluidic cell designed to enable the real time control of the nanoresonator transmittance as well as the real time visualization of the particles motion in the vicinity of the nanocavity. It is demonstrated that the optical trap above the cavity enables the assembly of multiple particles in respect of different stable conformations.

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Condensed Matter::Otherbusiness.industryNanophotonicsPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMicrometreResonatorRESONATORSOpticsRadiation pressureOptical tweezers0103 physical sciencesTransmittanceOptoelectronicsSelf-assembly0210 nano-technologybusinessPhotonic crystal
researchProduct

Current Spreading Length and Injection Efficiency in ZnO/GaN-Based Light-Emitting Diodes

2019

We report on carrier injection features in light-emitting diodes (LEDs) based on nonintentionally doped-ZnO/p-GaN heterostructures. These LEDs consist of a ZnO layer grown by chemical-bath deposition (CBD) onto a p-GaN template without using any seed layer. The ZnO layer (~1- $\mu \text{m}$ thickness) consists of a dense collection of partially coalesced ZnO nanorods, organized in wurtzite phase with marked vertical orientation, whose density depends on the concentration of the solution during the CBD process. Due to the limited conductivity of the p-GaN layer, the recombination in the n-region is strongly dependent on the spreading length of the holes, ${L}_{h}$ , coming from the p-contact…

010302 applied physicsMaterials sciencebusiness.industryGallium nitrideHeterojunction01 natural sciencesSettore ING-INF/01 - ElettronicaElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundchemistrylawPhase (matter)0103 physical sciencesElectrodeOptoelectronicsNanorodChemical-bath deposition (CBD) contact injection current spreading length zinc oxide (ZnO) nanorods ZnO/GaN-based light-emitting diodes (LEDs) ZnO/GaN heterostructures.Electrical and Electronic EngineeringbusinessWurtzite crystal structureLight-emitting diodeDiode
researchProduct