Search results for "Identities"
showing 10 items of 87 documents
Asymptotics for Graded Capelli Polynomials
2014
The finite dimensional simple superalgebras play an important role in the theory of PI-algebras in characteristic zero. The main goal of this paper is to characterize the T 2-ideal of graded identities of any such algebra by considering the growth of the corresponding supervariety. We consider the T 2-ideal Γ M+1,L+1 generated by the graded Capelli polynomials C a p M+1[Y,X] and C a p L+1[Z,X] alternanting on M+1 even variables and L+1 odd variables, respectively. We prove that the graded codimensions of a simple finite dimensional superalgebra are asymptotically equal to the graded codimensions of the T 2-ideal Γ M+1,L+1, for some fixed natural numbers M and L. In particular csupn(Γk2+l2+1…
Y-proper graded cocharacters and codimensions of upper triangular matrices of size 2, 3, 4
2012
Abstract Let F be a field of characteristic 0. We consider the upper triangular matrices with entries in F of size 2, 3 and 4 endowed with the grading induced by that of Vasilovsky. In this paper we give explicit computation for the multiplicities of the Y -proper graded cocharacters and codimensions of these algebras.
On the exponential growth of graded Capelli polynomials
2013
In a free superalgebra over a field of characteristic zero we consider the graded Capelli polynomials Cap M+1[Y,X] and Cap L+1[Z,X] alternating on M+1 even variables and L+1 odd variables, respectively. Here we compute the superexponent of the variety of superalgebras determinated by Cap M+1[Y,X] and Cap L+1[Z,X]. An essential tool in our computation is the generalized-six-square theorem proved in [3].
Of Direct Effect, Primacy and Constitutional Identities. Rome and Luxembourg enmeshed in the Taricco Case
2017
International audience
Volume, energy and generalized energy of unit vector fields on Berger spheres: stability of Hopf vector fields
2005
We study to what extent the known results concerning the behaviour of Hopf vector fields, with respect to volume, energy and generalized energy functionals, on the round sphere are still valid for the metrics obtained by performing the canonical variation of the Hopf fibration.
On the ∗-cocharacter sequence of 3×3 matrices
2000
Abstract Let M 3 (F) be the algebra of 3×3 matrices with involution * over a field F of characteristic zero. We study the ∗ -polynomial identities of M 3 (F) , where ∗=t is the transpose involution, through the representation theory of the hyperoctahedral group B n . After decomposing the space of multilinear ∗ -polynomial identities of degree n under the B n -action, we determine which irreducible B n -modules appear with non-zero multiplicity. In symbols, we write the nth ∗ -cocharacter χ n (M 3 (F),*)=∑ r=0 n ∑ λ⊢r,h(λ)⩽6 μ⊢n−r,h(μ)⩽3 m λ,μ χ λ,μ , where λ and μ are partitions of r and n−r , respectively, χ λ,μ is the irreducible B n -character associated to the pair (λ,μ) and m λ,μ ⩾0 i…
Ordinary and graded cocharacter of the Jordan algebra of 2x2 upper triangular matrices
2014
Abstract Let F be a field of characteristic zero and U J 2 ( F ) be the Jordan algebra of 2 × 2 upper triangular matrices over F . In this paper we give a complete description of the space of multilinear graded and ordinary identities in the language of Young diagrams through the representation theory of a Young subgroup of S n . For every Z 2 -grading of U J 2 ( F ) we compute the multiplicities in the graded cocharacter sequence and furthermore we compute the ordinary cocharacter.
Codimension and colength sequences of algebras and growth phenomena
2015
We consider non necessarily associative algebras over a field of characteristic zero and their polynomial identities. Here we describe some of the results obtained in recent years on the sequence of codimensions and the sequence of colengths of an algebra.
On algebras of polynomial codimension growth
2016
Let A be an associative algebra over a field F of characteristic zero and let $$c_n(A), n=1, 2, \ldots $$ , be the sequence of codimensions of A. It is well-known that $$c_n(A), n=1, 2, \ldots $$ , cannot have intermediate growth, i.e., either is polynomially bounded or grows exponentially. Here we present some results on algebras whose sequence of codimensions is polynomially bounded.
Group graded algebras and multiplicities bounded by a constant
2013
AbstractLet G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant.