Search results for "Image Segmentation"

showing 10 items of 234 documents

Weighted Likelihood Function of Multiple Statistical Parameters to Retrieve 2D TRUS-MR Slice Correspondece for Prostate Biopsy

2012

International audience; This paper presents a novel method to identify the 2D axial Magnetic Resonance (MR) slice from a pre-acquired MR prostate volume that closely corresponds to the 2D axial Transrectal Ultrasound (TRUS) slice obtained during prostate biopsy. The shape-context representations of the segmented prostate contours in both the imaging modalities are used to establish point correspondences using Bhattacharyya distance. Thereafter, Chi-square distance is used to find the prostate shape similarities between the MR slices and the TRUS slice. Normalized mutual information and correlation coefficient between the TRUS and MR slices are computed to find the information theoretic simi…

Ground truthProstate biopsySimilarity (geometry)Correlation coefficientmedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingbusiness.industryStatistical parameter[INFO.INFO-IM] Computer Science [cs]/Medical ImagingMagnetic resonance imagingPattern recognition02 engineering and technologyImage segmentationurologic and male genital diseases030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingBhattacharyya distance020201 artificial intelligence & image processingArtificial intelligencebusinessMathematics
researchProduct

Texture analysis for infarcted myocardium detection on delayed enhancement MRI

2017

Detection of infarcted myocardium in the left ventricle is achieved with delayed enhancement magnetic resonance imaging (DE-MRI). However, manual segmentation is tedious and prone to variability. We studied three texture analysis methods (run-length matrix, co-occurrence matrix, and autoregressive model) in combination with histogram features to characterize the infarcted myocardium. We evaluated 10 patients with chronic infarction to select the most discriminative features and to train a support vector machine (SVM) classifier. The classifier model was then used to segment five human hearts from the STACOM DE-MRI challenge at MICCAI 2012. The Dice coefficient was used to compare the segmen…

Ground truthmedicine.diagnostic_testComputer sciencebusiness.industryFeature extractionPattern recognitionMagnetic resonance imagingImage segmentation030218 nuclear medicine & medical imagingSupport vector machine03 medical and health sciences0302 clinical medicineDiscriminative modelHistogrammedicineSegmentationArtificial intelligencebusiness030217 neurology & neurosurgery2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
researchProduct

Hypergraph imaging: an overview

2002

Hypergraph theory as originally developed by Berge (Hypergraphe, Dunod, Paris, 1987) is a theory of finite combinatorial sets, modeling lot of problems of operational research and combinatorial optimization. This framework turns out to be very interesting for many other applications, in particular for computer vision. In this paper, we are going to survey the relationship between combinatorial sets and image processing. More precisely, we propose an overview of different applications from image hypergraph models to image analysis. It mainly focuses on the combinatorial representation of an image and shows the effectiveness of this approach to low level image processing; in particular to seg…

HypergraphTheoretical computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingImage segmentationEdge detectionScale spaceArtificial IntelligenceComputer Science::Computer Vision and Pattern RecognitionSignal ProcessingCombinatorial optimizationComputer Vision and Pattern RecognitionRepresentation (mathematics)SoftwareMathematicsofComputing_DISCRETEMATHEMATICSFeature detection (computer vision)MathematicsPattern Recognition
researchProduct

A novel framework for MR image segmentation and quantification by using MedGA

2019

BACKGROUND AND OBJECTIVES: Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration images with a bimodal intensity distribution, image binarization can be used to classify the input pictorial data into two classes, given a threshold intensity value. Unfortunately, adaptive thresholding techniques for two-class segmentation work properly only for images characterized by bimodal histograms. We aim at overcoming these limitations and…

ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICAAdaptive thresholding; Bimodal intensity distribution; Evolutionary computation; Image pre-processing; Magnetic Resonance imaging; Quantitative medical imagingComputer scienceAdaptive thresholdingImage ProcessingDecision MakingNeurosurgeryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHealth InformaticsContext (language use)Adaptive thresholding; Bimodal intensity distribution; Evolutionary computation; Image pre-processing; Magnetic Resonance imaging; Quantitative medical imaging; Algorithms; Brain Neoplasms; Computer Simulation; Decision Making; Female; Humans; Image Processing Computer-Assisted; Leiomyoma; Neurosurgery; Radiosurgery; Software; Magnetic Resonance ImagingEvolutionary computationRadiosurgeryING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI030218 nuclear medicine & medical imaging03 medical and health sciencesComputer-Assisted0302 clinical medicineHistogramQuantitative medical imagingmedicineImage Processing Computer-AssistedHumansSegmentationComputer SimulationHistogram equalizationmedicine.diagnostic_testLeiomyomaSettore INF/01 - Informaticabusiness.industryBrain NeoplasmsINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionImage segmentationThresholdingComputer Science ApplicationsBimodal intensity distributionImage pre-processingTransformation (function)Magnetic Resonance imagingFemaleArtificial intelligencebusiness030217 neurology & neurosurgeryAlgorithmsSoftware
researchProduct

Computer-Assisted Approaches for Uterine Fibroid Segmentation in MRgFUS Treatments: Quantitative Evaluation and Clinical Feasibility Analysis

2019

Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition ap…

ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICAmedicine.medical_specialtyTreatment responseUterine fibroidsComputer scienceMagnetic Resonance guided Focused Ultrasound Surgery0206 medical engineeringThermal ablation02 engineering and technologyClinical feasibility; Computer-assisted medical image segmentation; Magnetic resonance guided focused ultrasound surgery; Non-Perfused volume assessment; Pattern recognition; Uterine fibroidsPattern RecognitionClinical feasibilityING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI030218 nuclear medicine & medical imagingMagnetic resonance guided focused ultrasound surgeryMagnetic Resonance guided Focused Ultrasound Surgery Uterine fibroids03 medical and health sciences0302 clinical medicineNon-Perfused Volume assessmentmedicineUterine fibroidSegmentationUterine fibroids Indexed keywordsSettore INF/01 - InformaticaComputer Science (all)INF/01 - INFORMATICAmedicine.disease020601 biomedical engineeringComputer-assisted medical image segmentation; Pattern Recognition; Magnetic Resonance guided Focused Ultrasound Surgery Uterine fibroids; Non-Perfused Volume assessment; Clinical feasibility;Decision Sciences (all)Pattern recognition (psychology)RadiologyUterine fibroidsComputer-assisted medical image segmentation
researchProduct

Benchmarking Wilms’ tumor in multisequence MRI data: why does current clinical practice fail? Which popular segmentation algorithms perform well?

2019

Wilms' tumor is one of the most frequent malignant solid tumors in childhood. Accurate segmentation of tumor tissue is a key step during therapy and treatment planning. Since it is difficult to obtain a comprehensive set of tumor data of children, there is no benchmark so far allowing evaluation of the quality of human or computer-based segmentations. The contributions in our paper are threefold: (i) we present the first heterogeneous Wilms' tumor benchmark data set. It contains multisequence MRI data sets before and after chemotherapy, along with ground truth annotation, approximated based on the consensus of five human experts. (ii) We analyze human expert annotations and interrater varia…

Image ProcessingComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION610 Medicine & healthMachine learningcomputer.software_genre030218 nuclear medicine & medical imagingSet (abstract data type)03 medical and health sciences0302 clinical medicineMedical imagingMedicineRadiology Nuclear Medicine and imagingSegmentationRadiation treatment planningbusiness.industry10042 Clinic for Diagnostic and Interventional RadiologyWilms' tumorBenchmarkingImage segmentationmedicine.disease3. Good healthComputingMethodologies_PATTERNRECOGNITION030220 oncology & carcinogenesisBenchmark (computing)Artificial intelligencebusinesscomputerJournal of Medical Imaging
researchProduct

Atlas selection strategy using least angle regression in multi-atlas segmentation propagation

2011

International audience; In multi-atlas based segmentation propagation, segmentations from multiple atlases are propagated to the target image and combined to produce the segmentation result. Local weighted voting (LWV) method is a classifier fusion method which combines the propagated atlases weighted by local image similarity. We demonstrate that the segmentation accuracy using LWV improves as the number of atlases increases. Under this context, we show that introducing diversity in addition to image similarity by using least-angle regression (LAR) criteria is a more efficient way to rank and select atlases. The accuracy of multi-atlas segmentation converges faster when the atlases are sel…

Image fusionContextual image classificationbusiness.industryAtlas (topology)Computer scienceLeast-angle regressionFeature extractionPattern recognitionImage segmentation030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][ INFO.INFO-TI ] Computer Science [cs]/Image ProcessingSegmentationComputer visionArtificial intelligencebusiness030217 neurology & neurosurgery
researchProduct

Image Segmentation by Deep Community Detection Approach

2017

International audience; To address the problem of segmenting an image into homogeneous communities this paper proposes an efficient algorithm to detect deep communities in the image by maximizing at each stage a new centrality measure, called the local Fiedler vector centrality (LFVC). This measure is associated with the sensitivity of algebraic connectivity to node removals. We show that a greedy node removal strategy, based on iterative maximization of LFVC, has bounded performance loss relative to the optimal, but intractable, combinatorial batch removal strategy. A remarkable feature of this method is the ability to segments the image automatically into homogeneous regions by maximizing…

Image segmentationAlgebraic connectivitybusiness.industrySegmentation-based object categorizationComputer scienceNode (networking)Complex networksScale-space segmentationLocal Fiedler vector centrality020206 networking & telecommunicationsPattern recognition02 engineering and technologyImage segmentation[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]Removal strategyFeature (computer vision)0202 electrical engineering electronic engineering information engineeringDeep community detection020201 artificial intelligence & image processingSegmentationArtificial intelligencebusinessCentrality
researchProduct

A simple and efficient face detection algorithm for video database applications

2000

The objective of this work is to provide a simple and yet efficient tool to detect human faces in video sequences. This information can be very useful for many applications such as video indexing and video browsing. In particular the paper focuses on the significant improvements made to our face detection algorithm presented by Albiol, Bouman and Delp (see IEEE Int. Conference on Image Processing, Kobe, Japan, 1999). Specifically, a novel approach to retrieve skin-like homogeneous regions is presented, which is later used to retrieve face images. Good results have been obtained for a large variety of video sequences. Peer Reviewed

Image segmentationObject detectionbusiness.industryComputer scienceImage processingImage segmentation:Enginyeria de la telecomunicació [Àrees temàtiques de la UPC]Object detectionTelecomunicacióImage sequencesDatabase indexingVideo trackingTelecommunicationVideo databasesVideo browsingComputer visionArtificial intelligenceImage retrievalFace detectionbusinessImage retrievalProceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)
researchProduct

Image segmentation to evaluate islets of langherans

2008

This contribution deals with an unsupervised system to process digital photomicrographs in order to locate and analyze islets of Langherans in human pancreases. The experiment has been conducted on real data and, though we are still going to complete the evaluation of the whole method, we expect to define a set of proper features (e.g. area, perimeter, fractal dimension, shape complexity, texture and entropy) useful for a fast and reliable counting of healthy cells. In particular, this research aims to measure the advisability of a possible implantation in patients affected by type I diabetes mellitus

Image segmentationSettore INF/01 - InformaticaIslets of langheransImplantation advisability
researchProduct