6533b853fe1ef96bd12ac136
RESEARCH PRODUCT
A novel framework for MR image segmentation and quantification by using MedGA
Leonardo Rundo ABCDAndrea Tangherloni 1 AEFPaolo Cazzaniga GHMarco S. Nobile AHGiorgio Russo BMaria Carla Gilardi BSalvatore Vitabile IGiancarlo Mauri AHDaniela Besozzi ACarmelo Militello Bsubject
ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICAAdaptive thresholding; Bimodal intensity distribution; Evolutionary computation; Image pre-processing; Magnetic Resonance imaging; Quantitative medical imagingComputer scienceAdaptive thresholdingImage ProcessingDecision MakingNeurosurgeryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONHealth InformaticsContext (language use)Adaptive thresholding; Bimodal intensity distribution; Evolutionary computation; Image pre-processing; Magnetic Resonance imaging; Quantitative medical imaging; Algorithms; Brain Neoplasms; Computer Simulation; Decision Making; Female; Humans; Image Processing Computer-Assisted; Leiomyoma; Neurosurgery; Radiosurgery; Software; Magnetic Resonance ImagingEvolutionary computationRadiosurgeryING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI030218 nuclear medicine & medical imaging03 medical and health sciencesComputer-Assisted0302 clinical medicineHistogramQuantitative medical imagingmedicineImage Processing Computer-AssistedHumansSegmentationComputer SimulationHistogram equalizationmedicine.diagnostic_testLeiomyomaSettore INF/01 - Informaticabusiness.industryBrain NeoplasmsINF/01 - INFORMATICAMagnetic resonance imagingPattern recognitionImage segmentationThresholdingComputer Science ApplicationsBimodal intensity distributionImage pre-processingTransformation (function)Magnetic Resonance imagingFemaleArtificial intelligencebusiness030217 neurology & neurosurgeryAlgorithmsSoftwaredescription
BACKGROUND AND OBJECTIVES: Image segmentation represents one of the most challenging issues in medical image analysis to distinguish among different adjacent tissues in a body part. In this context, appropriate image pre-processing tools can improve the result accuracy achieved by computer-assisted segmentation methods. Taking into consideration images with a bimodal intensity distribution, image binarization can be used to classify the input pictorial data into two classes, given a threshold intensity value. Unfortunately, adaptive thresholding techniques for two-class segmentation work properly only for images characterized by bimodal histograms. We aim at overcoming these limitations and automatically determining a suitable optimal threshold for bimodal Magnetic Resonance (MR) images, by designing an intelligent image analysis framework tailored to effectively assist the physicians during their decision-making tasks. METHODS: In this work, we present a novel evolutionary framework for image enhancement, automatic global thresholding, and segmentation, which is here applied to different clinical scenarios involving bimodal MR image analysis: (i) uterine fibroid segmentation in MR guided Focused Ultrasound Surgery, and (ii) brain metastatic cancer segmentation in neuro-radiosurgery therapy. Our framework exploits MedGA as a pre-processing stage. MedGA is an image enhancement method based on Genetic Algorithms that improves the threshold selection, obtained by the efficient Iterative Optimal Threshold Selection algorithm, between the underlying sub-distributions in a nearly bimodal histogram. RESULTS: The results achieved by the proposed evolutionary framework were quantitatively evaluated, showing that the use of MedGA as a pre-processing stage outperforms the conventional image enhancement methods (i.e., histogram equalization, bi-histogram equalization, Gamma transformation, and sigmoid transformation), in terms of both MR image enhancement and segmentation evaluation metrics. CONCLUSIONS: Thanks to this framework, MR image segmentation accuracy is considerably increased, allowing for measurement repeatability in clinical workflows. The proposed computational solution could be well-suited for other clinical contexts requiring MR image analysis and segmentation, aiming at providing useful insights for differential diagnosis and prognosis.
year | journal | country | edition | language |
---|---|---|---|---|
2019-07-01 |