Search results for "Image classification"
showing 10 items of 114 documents
Method for Classifying a Digital Image
2010
Introducing Pseudo-Singularity Points for Efficient Fingerprints Classification and Recognition
2010
Fingerprint classification and matching are two key issues in automatic fingerprint recognition. Generally, fingerprint recognition is based on a set of relevant local characteristics, such as ridge ending and bifurcation (minutiae). Fingerprint classification is based on fingerprint global features, such as core and delta singularity points. Unfortunately, singularity points are not always present in a fingerprint image: the acquisition process is not ideal, so that the fingerprint is broken, or the fingerprint belongs to the arch class. In the above cases, pseudo-singularity-points will be detected and extracted to make possible fingerprint classification and matching. As result, fingerpr…
Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization
2016
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…
Simplified spiking neural network architecture and STDP learning algorithm applied to image classification
2015
Spiking neural networks (SNN) have gained popularity in embedded applications such as robotics and computer vision. The main advantages of SNN are the temporal plasticity, ease of use in neural interface circuits and reduced computation complexity. SNN have been successfully used for image classification. They provide a model for the mammalian visual cortex, image segmentation and pattern recognition. Different spiking neuron mathematical models exist, but their computational complexity makes them ill-suited for hardware implementation. In this paper, a novel, simplified and computationally efficient model of spike response model (SRM) neuron with spike-time dependent plasticity (STDP) lear…
Optimal band selection for future satellite sensor dedicated to soil science
2009
Hyperspectral imaging systems could be used for identifying the different soil types from the satellites. However, detecting the reflectance of the soils in all the wavelengths involves the use of a large number of sensors with high accuracy and also creates a problem in transmitting the data to earth stations for processing. The current sensors can reach a bandwidth of 20 nm and hence, the reflectance obtained using the sensors are the integration of reflectance obtained in each of the wavelength present in the spectral band. Moreover, not all spectral bands contribute equally to classification and hence, identifying the bands necessary to have a good classification is necessary to reduce …
Semi-supervised Hyperspectral Image Classification with Graphs
2006
This paper presents a semi-supervised graph-based method for the classification of hyperspectral images. The method is designed to exploit the spatial/contextual information in the im- ages through composite kernels. The proposed method produces smoother classifications with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. Good accuracy in high dimensional spaces and low number of labeled samples (ill-posed situations) are produced as compared to standard inductive support vector machines.
Including invariances in SVM remote sensing image classification
2012
This paper introduces a simple method to include invariances in support vector machine (SVM) for remote sensing image classification. We rely on the concept of virtual support vectors, by which the SVM is trained with both the selected support vectors and synthetic examples encoding the invariance of interest. The algorithm is very simple and effective, as demonstrated in two particularly interesting examples: invariance to the presence of shadows and to rotations in patchbased image segmentation. The improved accuracy (around +6% both in OA and Cohen's κ statistic), along with the simplicity of the approach encourage its use and extension to encode other invariances and other remote sensin…
Time series of Cosmo-SkyMed data for landcover classification and surface parameter retrieval over agricultural sites
2012
This paper reports on the results of an Italian project aimed at investigating the use of X-band COSMO-SkyMed (CSK) SAR data for applications in agriculture and hydrology. Existing classification and retrieval algorithms have been tailored to CSK data and time series of crop, leaf area index and soil moisture maps have been retrieved and assessed through the comparison with in situ data collected over three agricultural sites. In addition, the CSK-derived surface parameters have been integrated into crop growth and hydrologic models and the resulting improvements have been assessed. Results indicate that multi-temporal dual-polarized CSK data are very well-suited for agricultural crop class…
Global Upscaling of the MODIS Land Cover with Google Earth Engine and Landsat Data
2021
Image classification has become one of the most common applications in remote sensing yielding to the creation of a variety of operational thematic maps at multiple spatio-temporal scales. The information contained in these maps summarizes key characteristics related with the physical environment and provides fundamental information of the Earth for vegetation monitoring or land use status over time. However, high spatial resolution land cover maps are usually only produced for specific small regions or in an image tile. We present a general methodology to obtain a high spatial resolution land cover maps using Landsat spectral information, the powerful Google Earth Engine platform, and oper…
Increasing the Inference and Learning Speed of Tsetlin Machines with Clause Indexing
2020
The Tsetlin Machine (TM) is a machine learning algorithm founded on the classical Tsetlin Automaton (TA) and game theory. It further leverages frequent pattern mining and resource allocation principles to extract common patterns in the data, rather than relying on minimizing output error, which is prone to overfitting. Unlike the intertwined nature of pattern representation in neural networks, a TM decomposes problems into self-contained patterns, represented as conjunctive clauses. The clause outputs, in turn, are combined into a classification decision through summation and thresholding, akin to a logistic regression function, however, with binary weights and a unit step output function. …