Search results for "Image classification"

showing 10 items of 114 documents

Method for Classifying a Digital Image

2010

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniImage classification
researchProduct

Introducing Pseudo-Singularity Points for Efficient Fingerprints Classification and Recognition

2010

Fingerprint classification and matching are two key issues in automatic fingerprint recognition. Generally, fingerprint recognition is based on a set of relevant local characteristics, such as ridge ending and bifurcation (minutiae). Fingerprint classification is based on fingerprint global features, such as core and delta singularity points. Unfortunately, singularity points are not always present in a fingerprint image: the acquisition process is not ideal, so that the fingerprint is broken, or the fingerprint belongs to the arch class. In the above cases, pseudo-singularity-points will be detected and extracted to make possible fingerprint classification and matching. As result, fingerpr…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniMinutiaeContextual image classificationbusiness.industryComputer scienceData_MISCELLANEOUSFeature extractionFingerprint Verification CompetitionPattern recognitionFingerprint recognitionFingerprint singularity regions classification matching algorithm core and delta points fingerprint recognition systems.Statistical classificationFingerprintData_GENERALComputer visionArtificial intelligencebusinessBlossom algorithm2010 International Conference on Complex, Intelligent and Software Intensive Systems
researchProduct

Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization

2016

Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…

Signal Processing (eess.SP)FOS: Computer and information sciences010504 meteorology & atmospheric sciencesHyperspectral imagingComputer Vision and Pattern Recognition (cs.CV)0211 other engineering and technologiesNormalization (image processing)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology3107 Atomic and Molecular Physics and Optics01 natural sciencesLaboratory of Geo-information Science and Remote SensingComputer vision910 Geography & travelMathematicsDomain adaptationContextual image classificationImage and Video Processing (eess.IV)1903 Computers in Earth SciencesPE&RCClassificationAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel method10122 Institute of GeographyKernel (image processing)Feature extractionFeature extractionVery high resolutionGraph-based methods1706 Computer Science ApplicationsFOS: Electrical engineering electronic engineering information engineeringLaboratorium voor Geo-informatiekunde en Remote SensingComputers in Earth SciencesElectrical Engineering and Systems Science - Signal ProcessingEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingManifold alignmentbusiness.industryNonlinear dimensionality reductionHistogram matchingKernel methodsPattern recognitionElectrical Engineering and Systems Science - Image and Video ProcessingManifold learningArtificial intelligence2201 Engineering (miscellaneous)businessISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Simplified spiking neural network architecture and STDP learning algorithm applied to image classification

2015

Spiking neural networks (SNN) have gained popularity in embedded applications such as robotics and computer vision. The main advantages of SNN are the temporal plasticity, ease of use in neural interface circuits and reduced computation complexity. SNN have been successfully used for image classification. They provide a model for the mammalian visual cortex, image segmentation and pattern recognition. Different spiking neuron mathematical models exist, but their computational complexity makes them ill-suited for hardware implementation. In this paper, a novel, simplified and computationally efficient model of spike response model (SRM) neuron with spike-time dependent plasticity (STDP) lear…

Spiking neural networkQuantitative Biology::Neurons and CognitionComputational complexity theoryContextual image classificationComputer sciencebusiness.industryImage segmentationNetwork topologyExternal Data RepresentationSignal ProcessingArtificial neuronArtificial intelligenceElectrical and Electronic EngineeringbusinessInformation SystemsBrain–computer interfaceEURASIP Journal on Image and Video Processing
researchProduct

Optimal band selection for future satellite sensor dedicated to soil science

2009

Hyperspectral imaging systems could be used for identifying the different soil types from the satellites. However, detecting the reflectance of the soils in all the wavelengths involves the use of a large number of sensors with high accuracy and also creates a problem in transmitting the data to earth stations for processing. The current sensors can reach a bandwidth of 20 nm and hence, the reflectance obtained using the sensors are the integration of reflectance obtained in each of the wavelength present in the spectral band. Moreover, not all spectral bands contribute equally to classification and hence, identifying the bands necessary to have a good classification is necessary to reduce …

Statistical classificationContextual image classificationComputer scienceBandwidth (signal processing)Hyperspectral imagingSatelliteFeature selectionSpectral bandsData transmissionRemote sensing2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
researchProduct

Semi-supervised Hyperspectral Image Classification with Graphs

2006

This paper presents a semi-supervised graph-based method for the classification of hyperspectral images. The method is designed to exploit the spatial/contextual information in the im- ages through composite kernels. The proposed method produces smoother classifications with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. Good accuracy in high dimensional spaces and low number of labeled samples (ill-posed situations) are produced as compared to standard inductive support vector machines.

Structured support vector machineContextual image classificationbusiness.industryHyperspectral imagingPattern recognitionGraphRelevance vector machineSupport vector machineComputingMethodologies_PATTERNRECOGNITIONKernel (image processing)Artificial intelligencebusinessCluster analysisMathematics2006 IEEE International Symposium on Geoscience and Remote Sensing
researchProduct

Including invariances in SVM remote sensing image classification

2012

This paper introduces a simple method to include invariances in support vector machine (SVM) for remote sensing image classification. We rely on the concept of virtual support vectors, by which the SVM is trained with both the selected support vectors and synthetic examples encoding the invariance of interest. The algorithm is very simple and effective, as demonstrated in two particularly interesting examples: invariance to the presence of shadows and to rotations in patchbased image segmentation. The improved accuracy (around +6% both in OA and Cohen's κ statistic), along with the simplicity of the approach encourage its use and extension to encode other invariances and other remote sensin…

Structured support vector machineContextual image classificationbusiness.industryPattern recognitionImage segmentationENCODESupport vector machineSimple (abstract algebra)Encoding (memory)Computer visionArtificial intelligencebusinessStatisticRemote sensingMathematics2012 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Time series of Cosmo-SkyMed data for landcover classification and surface parameter retrieval over agricultural sites

2012

This paper reports on the results of an Italian project aimed at investigating the use of X-band COSMO-SkyMed (CSK) SAR data for applications in agriculture and hydrology. Existing classification and retrieval algorithms have been tailored to CSK data and time series of crop, leaf area index and soil moisture maps have been retrieved and assessed through the comparison with in situ data collected over three agricultural sites. In addition, the CSK-derived surface parameters have been integrated into crop growth and hydrologic models and the resulting improvements have been assessed. Results indicate that multi-temporal dual-polarized CSK data are very well-suited for agricultural crop class…

Synthetic aperture radarSeries (mathematics)Contextual image classificationbusiness.industryCOSMO-SkyMedHydrological modellingSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaVegetationCOSMO-SkyMed; SAR; X-bandHydrology (agriculture)AgricultureEnvironmental scienceSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliSAR COSMO-SkyMed X-bandX-bandLeaf area indexbusinessSettore ICAR/06 - Topografia E CartografiaRemote sensingSAR
researchProduct

Global Upscaling of the MODIS Land Cover with Google Earth Engine and Landsat Data

2021

Image classification has become one of the most common applications in remote sensing yielding to the creation of a variety of operational thematic maps at multiple spatio-temporal scales. The information contained in these maps summarizes key characteristics related with the physical environment and provides fundamental information of the Earth for vegetation monitoring or land use status over time. However, high spatial resolution land cover maps are usually only produced for specific small regions or in an image tile. We present a general methodology to obtain a high spatial resolution land cover maps using Landsat spectral information, the powerful Google Earth Engine platform, and oper…

Thematic mapContextual image classificationLand useComputer scienceRemote sensing (archaeology)ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONLand coverVegetationPlant functional typeImage resolutionRemote sensing2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

Increasing the Inference and Learning Speed of Tsetlin Machines with Clause Indexing

2020

The Tsetlin Machine (TM) is a machine learning algorithm founded on the classical Tsetlin Automaton (TA) and game theory. It further leverages frequent pattern mining and resource allocation principles to extract common patterns in the data, rather than relying on minimizing output error, which is prone to overfitting. Unlike the intertwined nature of pattern representation in neural networks, a TM decomposes problems into self-contained patterns, represented as conjunctive clauses. The clause outputs, in turn, are combined into a classification decision through summation and thresholding, akin to a logistic regression function, however, with binary weights and a unit step output function. …

Theoretical computer scienceContextual image classificationArtificial neural networkLearning automataComputer scienceSentiment analysisSearch engine indexingPattern recognition (psychology)OverfittingMNIST database
researchProduct