Search results for "Image classification"

showing 10 items of 114 documents

Identifying Images with Ladders Using Deep CNN Transfer Learning

2019

Deep Convolutional Neural Networks (CNNs) as well as transfer learning using their pre-trained models often find applications in image classification tasks. In this paper, we explore the utilization of pre-trained CNNs for identifying images containing ladders. We target a particular use case, where an insurance firm, in order to decide the price for workers’ compensation insurance for its client companies, would like to assess the risk involved in their workplace environments. For this, the workplace images provided by the client companies can be utilized and the presence of ladders in such images can be considered as a workplace hazard and therefore an indicator of risk. To this end, we e…

Hazard (logic)Contextual image classificationbusiness.industryComputer scienceDeep learningBinary numberMachine learningcomputer.software_genreConvolutional neural networkImage (mathematics)Binary classificationArtificial intelligencebusinessTransfer of learningcomputer
researchProduct

PCA Gaussianization for image processing

2009

The estimation of high-dimensional probability density functions (PDFs) is not an easy task for many image processing applications. The linear models assumed by widely used transforms are often quite restrictive to describe the PDF of natural images. In fact, additional non-linear processing is needed to overcome the limitations of the model. On the contrary, the class of techniques collectively known as projection pursuit, which solve the high-dimensional problem by sequential univariate solutions, may be applied to very general PDFs (e.g. iterative Gaussianization procedures). However, the associated computational cost has prevented their extensive use in image processing. In this work, w…

Contextual image classificationPixelIterative methodbusiness.industryLinear modelPattern recognitionImage processingDensity estimationsymbols.namesakeProjection pursuitsymbolsArtificial intelligencebusinessGaussian processMathematics2009 16th IEEE International Conference on Image Processing (ICIP)
researchProduct

2D motif basis applied to the classification of digital images

2016

The classification of raw data often involves the problem of selecting the appropriate set of features to represent the input data. Different types of features can be extracted from the input dataset, but only some of them are actually relevant for the classification process. Since relevant features are often unknown in real-world problems, many candidate features are usually introduced. This degrades both the speed and the predictive accuracy of the classifier due to the presence of redundancy in the set of candidate features. Recently, a special class of bidimensional motifs, i.e. 2D motif basis has been introduced in the literature. 2D motif basis showed to be powerful in capturing the r…

General Computer ScienceBasis (linear algebra)Contextual image classificationComputer sciencebusiness.industrypattern discovery image clasification motif patterns in 2DPattern recognition0102 computer and information sciences02 engineering and technology01 natural sciencesSet (abstract data type)Digital imageComputingMethodologies_PATTERNRECOGNITION010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringRedundancy (engineering)Benchmark (computing)020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)Image compression
researchProduct

A multi-process system for HEp-2 cells classification based on SVM

2016

An automatic system for pre-segmented IIF images analysis was developed.A non-standard pipeline for supervised image classification was adopted.The system uses a two-level pyramid to retain some spatial information.From each cell image 216 features are extracted.15 SVM classifiers one-against-one have been implemented. This study addresses the classification problem of the HEp-2 cells using indirect immunofluorescence (IIF) image analysis, which can indicate the presence of autoimmune diseases by finding antibodies in the patient serum. Recently, studies have shown that it is possible to identify the cell patterns using IIF image analysis and machine learning techniques. In this paper we de…

Computer scienceSVM02 engineering and technologyImmunofluorescencecomputer.software_genre030218 nuclear medicine & medical imagingImage (mathematics)03 medical and health sciences0302 clinical medicineArtificial IntelligencePyramid0202 electrical engineering electronic engineering information engineeringmedicinePyramid (image processing)Spatial analysisAccuracy1707Contextual image classificationmedicine.diagnostic_testFeatures reductionIndirect immunofluorescencePipeline (software)Class (biology)Settore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)StainingSupport vector machineHep-2 cells classificationSignal Processing020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionData miningcomputerSoftware
researchProduct

Towards a Hierarchical Multitask Classification Framework for Cultural Heritage

2018

Digital technologies such as 3D imaging, data analytics and computer vision opened the door to a large set of applications in cultural heritage. Digital acquisition of a cultural assets takes nowadays a couple of seconds thanks to the achievements in 2D and 3D acquisition technologies. However, enriching these cultural assets with labels and relevant metadata is still not fully automatized especially due to their nature and specificities. With the recent publication of several cultural heritage datasets, many researchers are tackling the challenge of effectively classifying and annotating digital heritage. The challenges that are often addressed are related to visual recognition and image c…

Computer scienceData field02 engineering and technology[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Multitask ClassificationCultural diversity0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]Digital preservationComputingMilieux_MISCELLANEOUSContextual image classificationDigital heritagebusiness.industryDeep learningConvolutional Neural Networks[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020206 networking & telecommunicationsData scienceMetadataCultural heritageDigital preservationCultural heritage020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)
researchProduct

Benchmark database for fine-grained image classification of benthic macroinvertebrates

2018

Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categori…

0106 biological sciencesComputer scienceta1172Sample (statistics)monitorointi02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural network0202 electrical engineering electronic engineering information engineeringkonenäköfine-grained classification14. Life underwaterFine-grained classificationInvertebrateta113ta112Contextual image classificationbusiness.industry010604 marine biology & hydrobiologyDeep learningConvolutional Neural NetworksBenchmark databasedeep learningPattern recognitionDeep learningselkärangattomatvedenlaatu6. Clean waterkoneoppiminenBenthic zoneBenthic macroinvertebratesbiomonitoringSignal ProcessingBiomonitoringta1181lajinmääritys020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligenceWater qualitybusinessbenthic macroinvertebrates
researchProduct

Incremental Generalized Discriminative Common Vectors for Image Classification.

2015

Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without th…

Complex data typeContextual image classificationComputer Networks and Communicationsbusiness.industryPattern recognitionMachine learningcomputer.software_genreComputer Science ApplicationsDiscriminative modelArtificial IntelligencePrincipal component analysisArtificial intelligencebusinesscomputerSoftwareSubspace topologyCurse of dimensionalityMathematicsIEEE transactions on neural networks and learning systems
researchProduct

A completely automated CAD system for mass detection in a large mammographic database

2006

Mass localization plays a crucial role in computer-aided detection (CAD) systems for the classification of suspicious regions in mammograms. In this article we present a completely automated classification system for the detection of masses in digitized mammographic images. The tool system we discuss consists in three processing levels: (a) Image segmentation for the localization of regions of interest (ROIs). This step relies on an iterative dynamical threshold algorithm able to select iso-intensity closed contours around gray level maxima of the mammogram. (b) ROI characterization by means of textural features computed from the gray tone spatial dependence matrix (GTSDM), containing secon…

Contextual image classificationPixelDatabasemedicine.diagnostic_testComputer scienceImage processingGeneral MedicineImage segmentationmedicine.diseasecomputer.software_genreBreast cancerImage textureComputer-aided diagnosismedicineMedical imagingMammographycomputerMedical Physics
researchProduct

Remote Sensing Image Classification with Large Scale Gaussian Processes

2017

Current remote sensing image classification problems have to deal with an unprecedented amount of heterogeneous and complex data sources. Upcoming missions will soon provide large data streams that will make land cover/use classification difficult. Machine learning classifiers can help at this, and many methods are currently available. A popular kernel classifier is the Gaussian process classifier (GPC), since it approaches the classification problem with a solid probabilistic treatment, thus yielding confidence intervals for the predictions as well as very competitive results to state-of-the-art neural networks and support vector machines. However, its computational cost is prohibitive for…

FOS: Computer and information sciences010504 meteorology & atmospheric sciencesComputer scienceMultispectral image0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technologyLand cover01 natural sciencesStatistics - ApplicationsMachine Learning (cs.LG)Kernel (linear algebra)Bayes' theoremsymbols.namesakeStatistics - Machine LearningApplications (stat.AP)Electrical and Electronic EngineeringGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingContextual image classificationArtificial neural networkData stream miningProbabilistic logicSupport vector machineComputer Science - LearningKernel (image processing)symbolsGeneral Earth and Planetary Sciences
researchProduct

Method for Classifying a Digital Image

2010

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniImage classification
researchProduct