Search results for "Image processing"
showing 10 items of 3285 documents
Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples
2016
Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…
Estimating Missing Information by Cluster Analysis and Normalized Convolution
2018
International audience; Smart city deals with the improvement of their citizens' quality of life. Numerous ad-hoc sensors need to be deployed to know humans' activities as well as the conditions in which these actions take place. Even if these sensors are cheaper and cheaper, their installation and maintenance cost increases rapidly with their number. We propose a methodology to limit the number of sensors to deploy by using a standard clustering technique and the normalized convolution to estimate environmental information whereas sensors are actually missing. In spite of its simplicity, our methodology lets us provide accurate assesses.
SAR Image Classification Combining Structural and Statistical Methods
2011
The main objective of this paper is to develop a new technique of SAR image classification. This technique combines structural parameters, including the Sill, the slope, the fractal dimension and the range, with statistical methods in a supervised image classification. Thanks to the range parameter, we define the suitable size of the image window used in the proposed approach of supervised image classification. This approach is based on a new way of characterising different classes identified on the image. The first step consists in determining relevant area of interest. The second step consists in characterising each area identified, by a matrix. The last step consists in automating the pr…
Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring
2020
Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…
Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field
2014
International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…
Enhancing the retrieval of stream surface temperature from Landsat data
2019
International audience; Thermal images of water bodies often show a radiance gradient perpendicular to the banks. This effect is frequently due to mixed land and water thermal pixels. In the case of the Landsat images, radiance mixing can also affect pure water pixels due the cubic convolution resampling of the native thermal measurements. Some authors recommended a general-purpose margin of two thermal pixels to the banks or a minimum river width of three pixels, to avoid near bank effects in water temperature retrievals. Given the relatively course spatial resolution of satellite thermal sensors, the three pixel margin severely restricts their application to temperature mapping in many ri…
Modelling Complex Volume Shape Using Ellipsoid: Application to Pore Space Representation
2017
Natural shapes have complex volume forms that are usually difficult to model using simple analytical equations. The complexity of the representation is due to the heterogeneity of the physical environment and the variety of phenomena involved. In this study we consider the representation of the porous media. Thanks to the technological advances in Computed Topography scanners, the acquisition of images of complex shapes becomes possible. However, and unfortunately, the image data is not directly usable for simulation purposes. In this paper, we investigate the modeling of such shapes using a piece wise approximation of image data by ellipsoids. We propose to use a split-merge strategy and a…
Modelling soil moisture at SMOS scale by use of a SVAT model over the Valencia Anchor Station
2010
16 páginas, 9 figuras, 5 tablas.
Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations
2015
Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the parameter) on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS) observations. AMSR-E brightness temperatures at 6.9 GHz obtained from January 2009 to September 2011, together with estimations of soil moisture from the SMOS (Soil Moisture and Ocean Salinity) L3 products and of soil temperature from ECMWF’s (European Centre for Medium-range Weather Forecasting) were used as inputs in a retrieval…
« On-the-go » multispectral imaging system to characterize the development of vineyard foliage
2015
International audience; In Precision Viticulture, multispectral imaging systems are currently used in remote sensing for vineyard vigor characterization but few are employed in proximal sensing. This work presents the potential of a proximal multispectral imaging system mounted on a track-laying tractor equipped with a Greenseeker RT-100 to provide an NDVI index. The camera acquired visible and near-infrared images which were calibrated in reflectance. Vegetation indices were computed and compared to Greenseeker data. From two of the resulting datasets, a spatio-temporal study of foliage description through both optical systems is presented. This first study assessed the proximal imagery re…