Search results for "Image processing"

showing 10 items of 3285 documents

Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

2016

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…

010504 meteorology & atmospheric sciencesComputer scienceStratigraphySoil ScienceImage processing010502 geochemistry & geophysicsResidual01 natural sciences550 Earth scienceslcsh:StratigraphyGeochemistry and PetrologyLeast squares support vector machineSegmentationlcsh:QE640-6990105 earth and related environmental sciencesEarth-Surface ProcessesPixelbusiness.industrylcsh:QE1-996.5PaleontologyGeologyPattern recognition550 Geowissenschaftenlcsh:GeologyData setSupport vector machineGeophysicsData pointArtificial intelligencebusinessSolid Earth
researchProduct

Estimating Missing Information by Cluster Analysis and Normalized Convolution

2018

International audience; Smart city deals with the improvement of their citizens' quality of life. Numerous ad-hoc sensors need to be deployed to know humans' activities as well as the conditions in which these actions take place. Even if these sensors are cheaper and cheaper, their installation and maintenance cost increases rapidly with their number. We propose a methodology to limit the number of sensors to deploy by using a standard clustering technique and the normalized convolution to estimate environmental information whereas sensors are actually missing. In spite of its simplicity, our methodology lets us provide accurate assesses.

010504 meteorology & atmospheric sciencesComputer sciencemedia_common.quotation_subjectReal-time computingEnergy Engineering and Power Technology02 engineering and technologyIterative reconstructionsmart city dealsCluster (spacecraft)01 natural sciencesIndustrial and Manufacturing Engineeringnormalized convolutionstandard clustering technique[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]ConvolutionArtificial IntelligenceSmart city11. Sustainability0202 electrical engineering electronic engineering information engineeringLimit (mathematics)SimplicityCluster analysisInstrumentationad-hoc sensors0105 earth and related environmental sciencesmedia_commonSettore INF/01 - InformaticaRenewable Energy Sustainability and the EnvironmentComputer Science Applications1707 Computer Vision and Pattern Recognitionenvironmental informationmissing informationComputer Networks and CommunicationKernel (image processing)020201 artificial intelligence & image processingcluster analysis2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)
researchProduct

SAR Image Classification Combining Structural and Statistical Methods

2011

The main objective of this paper is to develop a new technique of SAR image classification. This technique combines structural parameters, including the Sill, the slope, the fractal dimension and the range, with statistical methods in a supervised image classification. Thanks to the range parameter, we define the suitable size of the image window used in the proposed approach of supervised image classification. This approach is based on a new way of characterising different classes identified on the image. The first step consists in determining relevant area of interest. The second step consists in characterising each area identified, by a matrix. The last step consists in automating the pr…

010504 meteorology & atmospheric sciencesContextual image classificationbusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONProcess (computing)Pattern recognition02 engineering and technology01 natural sciencesFractal dimensionImage (mathematics)Range (mathematics)Matrix (mathematics)Fractal[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV][ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceVariogrambusinessComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesMathematics
researchProduct

Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring

2020

Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesImage processing02 engineering and technologycomputer.software_genre01 natural scienceslcsh:AgricultureKrigingTime series021101 geological & geomatics engineering0105 earth and related environmental sciences2. Zero hungerHyperparameterPixelSeries (mathematics)lcsh:SGaussian processes regressionSatellite Image Time SeriesData miningtime seriesSentinel-2optimizationAgronomy and Crop Sciencecomputercrop monitoringphenology indicatorsAgronomy
researchProduct

Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field

2014

International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…

010504 meteorology & atmospheric sciencesMean squared errorMeteorology[SDE.MCG]Environmental Sciences/Global Changes0211 other engineering and technologiesSoil Science02 engineering and technologyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesPhysics::Geophysics14. Life underwaterComputers in Earth SciencesTime series021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingAtmospheric soundingValencia Anchor StationRadiometerGeologyInversion (meteorology)SMAP15. Life on landBrightness temperatureSoil waterEnvironmental scienceRadiometrySoil moisture retrievalELBARA[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingSMOSRemote Sensing of Environment
researchProduct

Enhancing the retrieval of stream surface temperature from Landsat data

2019

International audience; Thermal images of water bodies often show a radiance gradient perpendicular to the banks. This effect is frequently due to mixed land and water thermal pixels. In the case of the Landsat images, radiance mixing can also affect pure water pixels due the cubic convolution resampling of the native thermal measurements. Some authors recommended a general-purpose margin of two thermal pixels to the banks or a minimum river width of three pixels, to avoid near bank effects in water temperature retrievals. Given the relatively course spatial resolution of satellite thermal sensors, the three pixel margin severely restricts their application to temperature mapping in many ri…

010504 meteorology & atmospheric sciencesPixel0208 environmental biotechnologySoil ScienceGeologyImage processing02 engineering and technology01 natural sciencesSubpixel rendering6. Clean water020801 environmental engineering[SDE]Environmental SciencesThermalRadianceEnvironmental scienceSatelliteSatellite imageryComputers in Earth SciencesRiver surface temperature Landsat 8 thermal band Thermal spatial resolution Cubic convolution resampling Thermal impact Mequinenza reservoir Ebro river Thermal stratificationImage resolution0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Modelling Complex Volume Shape Using Ellipsoid: Application to Pore Space Representation

2017

Natural shapes have complex volume forms that are usually difficult to model using simple analytical equations. The complexity of the representation is due to the heterogeneity of the physical environment and the variety of phenomena involved. In this study we consider the representation of the porous media. Thanks to the technological advances in Computed Topography scanners, the acquisition of images of complex shapes becomes possible. However, and unfortunately, the image data is not directly usable for simulation purposes. In this paper, we investigate the modeling of such shapes using a piece wise approximation of image data by ellipsoids. We propose to use a split-merge strategy and a…

010504 meteorology & atmospheric sciencesScale (ratio)Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONTangentApproximation algorithmContext (language use)02 engineering and technologyComputational geometry01 natural sciencesEllipsoid0202 electrical engineering electronic engineering information engineeringPiecewise020201 artificial intelligence & image processingRepresentation (mathematics)AlgorithmComputingMethodologies_COMPUTERGRAPHICS0105 earth and related environmental sciences2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)
researchProduct

Modelling soil moisture at SMOS scale by use of a SVAT model over the Valencia Anchor Station

2010

16 páginas, 9 figuras, 5 tablas.

010504 meteorology & atmospheric sciencestélédétectionMISSION SMOS0211 other engineering and technologiesSpaceespagne02 engineering and technologylcsh:Technology01 natural sciencesValidationTraitement du signal et de l'imagelcsh:Environmental technology. Sanitary engineering020701 environmental engineeringWater contentlcsh:Environmental sciencesComputingMilieux_MISCELLANEOUSlcsh:GE1-350InclusionRetrievalMoistureModelling soil moistureSignal and Image processinglcsh:Geography. Anthropology. RecreationRemote sensingDISPOSITIF EXPERIMENTAL; MISSION SMOSProductseurope[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingSMOS[SDE.MCG]Environmental Sciences/Global Changessatellite0207 environmental engineeringGrowing seasonParameterizationSpatial distributionlcsh:TD1-1066SchemeHapexspectroradiomètre14. Life underwater[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometerlcsh:TAMSR-Epays méditerranéenSalinityERS scatterometerlcsh:G13. Climate actionDISPOSITIF EXPERIMENTALSoil waterEnvironmental scienceRadiometry
researchProduct

Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations

2015

Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the parameter) on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS) observations. AMSR-E brightness temperatures at 6.9 GHz obtained from January 2009 to September 2011, together with estimations of soil moisture from the SMOS (Soil Moisture and Ocean Salinity) L3 products and of soil temperature from ECMWF’s (European Centre for Medium-range Weather Forecasting) were used as inputs in a retrieval…

010504 meteorology & atmospheric sciencestélédétectionScience0211 other engineering and technologiesWeather forecasting[SDU.STU]Sciences of the Universe [physics]/Earth SciencesElectromagnétismesoil surface roughness02 engineering and technologySurface finishcomputer.software_genredonnée satellite01 natural sciencesSciences de la TerreNormalized Difference Vegetation Indexsoil moisture;soil surface roughness;AMSR-EElectromagnetismEmissivitySurface roughnessTraitement du signal et de l'image14. Life underwaterWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRadiometercapteur smosQSignal and Image processingradiométrie microondesVegetationAMSR-E15. Life on land[SPI.ELEC]Engineering Sciences [physics]/ElectromagnetismEarth SciencesGeneral Earth and Planetary SciencesEnvironmental sciencesoil moisturecomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingRemote Sensing
researchProduct

« On-the-go » multispectral imaging system to characterize the development of vineyard foliage

2015

International audience; In Precision Viticulture, multispectral imaging systems are currently used in remote sensing for vineyard vigor characterization but few are employed in proximal sensing. This work presents the potential of a proximal multispectral imaging system mounted on a track-laying tractor equipped with a Greenseeker RT-100 to provide an NDVI index. The camera acquired visible and near-infrared images which were calibrated in reflectance. Vegetation indices were computed and compared to Greenseeker data. From two of the resulting datasets, a spatio-temporal study of foliage description through both optical systems is presented. This first study assessed the proximal imagery re…

0106 biological sciences010104 statistics & probability[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingNDVImultispectral imagingfoliage characterizationprecision viticulture15. Life on land0101 mathematics01 natural sciencesin-field acquisition010606 plant biology & botany
researchProduct