Search results for "Indecomposable"

showing 10 items of 13 documents

IRREDUCIBLE COXETER GROUPS

2004

We prove that a non-spherical irreducible Coxeter group is (directly) indecomposable and that an indefinite irreducible Coxeter group is strongly indecomposable in the sense that all its finite index subgroups are (directly) indecomposable. Let W be a Coxeter group. Write W = WX1 × ⋯ × WXb × WZ3, where WX1, … , WXb are non-spherical irreducible Coxeter groups and WZ3 is a finite one. By a classical result, known as the Krull–Remak–Schmidt theorem, the group WZ3 has a decomposition WZ3 = H1 × ⋯ × Hq as a direct product of indecomposable groups, which is unique up to a central automorphism and a permutation of the factors. Now, W = WX1 × ⋯ × WXb × H1 × ⋯ × Hq is a decomposition of W as a dir…

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General MathematicsGroup Theory (math.GR)0102 computer and information sciencesPoint group01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics::Group TheoryFOS: Mathematics0101 mathematicsLongest element of a Coxeter groupMathematics::Representation Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsMathematics::CombinatoricsCoxeter notationMathematics::Rings and Algebras010102 general mathematicsCoxeter group010201 computation theory & mathematicsCoxeter complexArtin group20F55Indecomposable moduleMathematics - Group TheoryCoxeter elementInternational Journal of Algebra and Computation
researchProduct

Surfaces of minimal degree of tame representation type and mutations of Cohen–Macaulay modules

2017

We provide two examples of smooth projective surfaces of tame CM type, by showing that any parameter space of isomorphism classes of indecomposable ACM bundles with fixed rank and determinant on a rational quartic scroll in projective 5-space is either a single point or a projective line. For surfaces of minimal degree and wild CM type, we classify rigid Ulrich bundles as Fibonacci extensions. For the rational normal scrolls S(2,3) and S(3,3), a complete classification of rigid ACM bundles is given in terms of the action of the braid group in three strands.

[ MATH ] Mathematics [math]Pure mathematicsFibonacci numberGeneral MathematicsType (model theory)Rank (differential topology)Commutative Algebra (math.AC)01 natural sciencesMathematics - Algebraic GeometryACM bundlesVarieties of minimal degreeMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsMathematics (all)Rings0101 mathematics[MATH]Mathematics [math]Algebraic Geometry (math.AG)MathematicsDiscrete mathematics14F05 13C14 14J60 16G60010102 general mathematicsVarietiesMCM modulesACM bundles; MCM modules; Tame CM type; Ulrich bundles; Varieties of minimal degree; Mathematics (all)Ulrich bundlesMathematics - Commutative AlgebraQuintic functionElliptic curveTame CM typeProjective lineBundles010307 mathematical physicsIsomorphismIndecomposable moduleMSC: 14F05; 13C14; 14J60; 16G60
researchProduct

The terminal hyperspace of homogeneous continua

2010

Abstract We investigate the structure of the collection of terminal subcontinua in homogeneous continua. The main result is a reduction of this structure to six specific types. Three of these types are of one-dimensional spaces, and examples representing these types are known. It is not known whether higher dimensional examples having non-trivial terminal subcontinua and representing the three remaining types exist.

Discrete mathematicsDecompositionPure mathematicsReduction (recursion theory)Continuum (topology)TerminalStructure (category theory)IndecomposableHyperspaceIntrinsicTerminal (electronics)Tree-likeHomogeneousContinuumHomogeneousGeometry and TopologyIndecomposable moduleMathematicsTopology and its Applications
researchProduct

Characters, bilinear forms and solvable groups

2016

Abstract We prove a number of results about the ordinary and Brauer characters of finite solvable groups in characteristic 2, by defining and using the concept of the extended nucleus of a real irreducible character. In particular we show that the Isaacs canonical lift of a real irreducible Brauer character has Frobenius–Schur indicator +1. We also show that the principal indecomposable module corresponding to a real irreducible Brauer character affords a quadratic geometry if and only if each extended nucleus is a split extension of a nucleus.

Algebra and Number TheoryBrauer's theorem on induced charactersMathematics::Rings and Algebras010102 general mathematicsBilinear form01 natural sciencesCombinatoricsLift (mathematics)Frobenius–Schur indicatorQuadratic equationSolvable group0103 physical sciences010307 mathematical physics0101 mathematicsMathematics::Representation TheoryIndecomposable moduleMathematicsJournal of Algebra
researchProduct

Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac

1991

We consider a class of indecomposable modules over the Virasoro Lie algebra that we call bounded admissible modules. We get results concerning the center and the dimensions of the weight spaces. We prove that these modules always contain a submodule with one-dimensional weight spaces. From this follows the proof of a conjecture of V. Kac concerning the classification of simple admissible modules.

Discrete mathematicsPure mathematics17B10Statistical and Nonlinear PhysicsUniversal enveloping algebraLie superalgebraAffine Lie algebra17B68Lie conformal algebraGraded Lie algebraAlgebra representationVirasoro algebraMathematics::Representation TheoryIndecomposable moduleMathematical PhysicsMathematicsCommunications in Mathematical Physics
researchProduct

Filament sets and homogeneous continua

2007

Abstract New tools are introduced for the study of homogeneous continua. The subcontinua of a given continuum are classified into three types: filament , non-filament , and ample , with ample being a subcategory of non-filament. The richness of the collection of ample subcontinua of a homogeneous continuum reflects where the space lies in the gradation from being locally connected at one extreme to indecomposable at another. Applications are given to the general theory of homogeneous continua and their hyperspaces.

SubcategoryAmpleContinuum (topology)010102 general mathematicsMathematical analysisMathematics::General TopologySpace (mathematics)01 natural sciences010101 applied mathematicsProtein filamentQuantitative Biology::Subcellular ProcessesMathematics::Algebraic GeometryGeneral theoryHomogeneousContinuumFilamentHomogeneousGeometry and Topology0101 mathematicsIndecomposable moduleMathematicsTopology and its Applications
researchProduct

Indecomposable sets of finite perimeter in doubling metric measure spaces

2020

We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak $(1,1)$-Poincar\'{e} inequality. The two main results we obtain are a decomposition theorem into indecomposable sets and a characterisation of extreme points in the space of BV functions. In both cases, the proof we propose requires an additional assumption on the space, which is called isotropicity and concerns the Hausdorff-type representation of the perimeter measure.

Pure mathematicsSocial connectednessvariaatiolaskentaSpace (mathematics)01 natural sciencesMeasure (mathematics)differentiaaligeometriaPerimeterMathematics - Analysis of PDEsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsExtreme pointRepresentation (mathematics)MathematicsApplied Mathematics010102 general mathematicsdifferential equationsMetric Geometry (math.MG)metriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric (mathematics)mittateoria010307 mathematical physicsvariation26B30 53C23Indecomposable moduleAnalysisAnalysis of PDEs (math.AP)Calculus of Variations and Partial Differential Equations
researchProduct

Examples of improjective operators

2000

It has been an open question for some time whether improjective operators are always inessential. Here we give some examples that answer in the negative this question as well as some other related ones, posed in [2, 3, 11, 12]. The description of the examples uses a indecomposable space, constructed by Gowers and Maurey [5], and a characterization of the indecomposable Banach spaces in terms of improjective operators.

AlgebraPure mathematicsApproximation propertyGeneral MathematicsBanach spaceCharacterization (mathematics)Space (mathematics)Indecomposable moduleMathematicsMathematische Zeitschrift
researchProduct

Semi-terminal continua in homogeneous spaces

2016

A semi-terminal continuum Y in a space X is defined by the condition that no two disjoint subcontinua of X intersect both Y and X-Y. Though numerous obvious examples of such continua can be found in arcs, trees and tree-like continua, these examples are related to the non-homogeneity of the space, and having semi-terminal continua in a homogeneous continuum is counter-intuitive. Recently, a large collection of homogeneous spaces with semi-terminal, non-terminal subcontinua has been found. This paper is devoted to studying these spaces and the general structure of homogeneous continua related to the presence of semi-terminal subcontinua.

decompositionfilamenthomogeneoussemi-indecomposablecontinuumsemi-terminalHouston Journal of Mathematics
researchProduct

A computational criterion for the Kac conjecture

2006

Abstract We give a criterion for the Kac conjecture asserting that the free term of the polynomial counting the absolutely indecomposable representations of a quiver over a finite field of given dimension coincides with the corresponding root multiplicity of the associated Kac–Moody algebra. Our criterion suits very well for computer tests.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryConjectureQuiverMultiplicity (mathematics)16G20High Energy Physics::TheoryFinite fieldMathematics::Quantum AlgebraFOS: MathematicsRepresentation Theory (math.RT)Mathematics::Representation TheoryIndecomposable moduleMathematics - Representation TheoryMathematicsJournal of Algebra
researchProduct