Search results for "Inducer"

showing 10 items of 178 documents

Natural Biostimulants Elicit Plant Immune System in an Integrated Management Strategy of the Postharvest Green Mold of Orange Fruits Incited by Penic…

2021

This study was aimed at testing the integrated use of a natural biostimulant based on seaweed (Ascophyllum nodosum) and plant (alfalfa and sugarcane) extracts and reduced dosages of the conventional synthetic fungicide Imazalil (IMZ) to manage postharvest rots of orange fruits. The following aspects were investigated: (i) the effectiveness of postharvest treatment with natural biostimulant alone or in mixture with IMZ at a reduced dose against green mold caused byPenicillium digitatum; (ii) the differential expression of defense genes in orange fruits treated with the natural biostimulant both alone and in combination with a reduced dose of IMZ; (iii) the persistence of the inhibitory activ…

0106 biological sciences0301 basic medicineDoseimazalilPlant ScienceOrange (colour)Plant disease resistanceBiology01 natural sciencesSB1-111003 medical and health sciencesmedia_common.cataloged_instanceEuropean unionmedia_commonPenicillium digitatumresistance genesPlant culturefood and beveragesbiology.organism_classificationFungicidebiostimulantsHorticulture030104 developmental biologyfungicide residuesPostharvestalgal and plant extractsresistance-inducersCitrus × sinensisCitrus sinensis010606 plant biology & botanyFrontiers in Plant Science
researchProduct

A self-inducible heterologous protein expression system in Escherichia coli

2016

AbstractEscherichia coli is an important experimental, medical and industrial cell factory for recombinant protein production. The inducible lac promoter is one of the most commonly used promoters for heterologous protein expression in E. coli. Isopropyl-β-D-thiogalactoside (IPTG) is currently the most efficient molecular inducer for regulating this promoter’s transcriptional activity. However, limitations have been observed in large-scale and microplate production, including toxicity, cost and culture monitoring. Here, we report the novel SILEX (Self-InducibLe Expression) system, which is a convenient, cost-effective alternative that does not require cell density monitoring or IPTG inducti…

0106 biological sciences0301 basic medicineExpression systemslac operonHeterologousGene ExpressionmechanismLac repressorBiology[ SDV.MP.BAC ] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriologymedicine.disease_cause01 natural sciencesArticlelaw.inventionApplied microbiologylactose03 medical and health scienceslawlac repressor010608 biotechnologyt1r3 taste receptor[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Gene expressionmedicineEscherichia coliFood and NutritionInducerstationary-phaserecombinant geneinducerEscherichia coliMultidisciplinaryhsp70PromoterMolecular biology[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyRecombinant Proteins030104 developmental biologycloned genesBiochemistry[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Alimentation et NutritionRecombinant DNA[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]bacteriophage-t7 rna-polymerase[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology
researchProduct

Free Radicals Mediate Systemic Acquired Resistance

2014

Summary: Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azel…

0106 biological sciences[SDV]Life Sciences [q-bio]ArabidopsisPseudomonas syringaeReductasemedicine.disease_cause01 natural scienceschemistry.chemical_compoundcuticle formationInducerDicarboxylic Acidsskin and connective tissue diseaseslcsh:QH301-705.5chemistry.chemical_classification0303 health sciencesMutationsalicyclic-acidCell biologydefenseGlutathione ReductaseBiochemistryGlycerophosphates[SDE]Environmental Sciencesplant immunitySystemic acquired resistances-nitrosoglutathioneSecondary infectionnitric-oxidearabidopsis-thalianaBiologyNitric OxideGeneral Biochemistry Genetics and Molecular BiologyNitric oxide03 medical and health sciencesmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologyReactive oxygen speciesArabidopsis Proteinsfungicell-deathbody regionschemistrylcsh:Biology (General)azelaic-acidresponsesNitric Oxide SynthaseReactive Oxygen SpeciesFunction (biology)010606 plant biology & botanynitric-oxide;plant immunity;arabidopsis-thaliana;s-nitrosoglutathione;cuticle formation;salicyclic-acid;azelaic-acid;cell-death;responses;defenseCell Reports
researchProduct

Distinctive Histogenesis and Immunological Microenvironment Based on Transcriptional Profiles of Follicular Dendritic Cell Sarcomas

2017

Abstract Follicular dendritic cell (FDC) sarcomas are rare mesenchymal tumors with variable clinical, morphologic, and phenotypic characteristics. Transcriptome analysis was performed on multiple FDC sarcomas and compared with other mesenchymal tumors, microdissected Castleman FDCs, and normal fibroblasts. Using unsupervised analysis, FDC sarcomas clustered with microdissected FDCs, distinct from other mesenchymal tumors and fibroblasts. The specific endowment of FDC-related gene expression programs in FDC sarcomas emerged by applying a gene signature of differentially expressed genes (n = 1,289) between microdissected FDCs and fibroblasts. Supervised analysis comparing FDC sarcomas with mi…

0301 basic medicineAlgorithms; B7-H1 Antigen; Castleman Disease; Chromatin; Cluster Analysis; Dendritic Cell Sarcoma Follicular; Gene Expression Profiling; Gene Expression Regulation Neoplastic; Humans; Programmed Cell Death 1 Ligand 2 Protein; Programmed Cell Death 1 Receptor; Signal Transduction; T-Lymphocytes Helper-Inducer; T-Lymphocytes Regulatory; Up-Regulation; Gene Regulatory Networks; Molecular Biology; Oncology; Cancer ResearchCancer ResearchProgrammed Cell Death 1 ReceptorDendritic Cell Sarcoma FollicularBiologyT-Lymphocytes RegulatoryB7-H1 AntigenTranscriptome03 medical and health sciencesmedicineCluster AnalysisHumansGene Regulatory NetworksMolecular BiologyRegulation of gene expressionCluster AnalysiGene Regulatory NetworkFollicular dendritic cellsCastleman DiseaseGene Expression ProfilingMesenchymal stem cellT-Lymphocytes Helper-InducerProgrammed Cell Death 1 Ligand 2 Proteinmedicine.diseaseChromatinUp-RegulationAlgorithmGene Expression Regulation NeoplasticGene expression profiling030104 developmental biologyOncologyCancer researchImmunohistochemistrySarcomaAlgorithmsHumanSignal TransductionExtracellular matrix organizationMolecular Cancer Research
researchProduct

Reciprocal regulation of the Il9 locus by counteracting activities of transcription factors IRF1 and IRF4.

2017

The T helper 9 (Th9) cell transcriptional network is formed by an equilibrium of signals induced by cytokines and antigen presentation. Here we show that, within this network, two interferon regulatory factors (IRF), IRF1 and IRF4, display opposing effects on Th9 differentiation. IRF4 dose-dependently promotes, whereas IRF1 inhibits, IL-9 production. Likewise, IRF1 inhibits IL-9 production by human Th9 cells. IRF1 counteracts IRF4-driven Il9 promoter activity, and IRF1 and IRF4 have opposing function on activating histone modifications, thus modulating RNA polymerase II recruitment. IRF1 occupancy correlates with decreased IRF4 abundance, suggesting an IRF1-IRF4-binding competition at the I…

0301 basic medicineCD4-Positive T-LymphocytesScienceCellular differentiationAntigen presentationGeneral Physics and AstronomyRNA polymerase IIMice TransgenicBiologyGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciences0302 clinical medicineInterferonmedicineAnimalsHumansInterleukin 9Transcription factorMice KnockoutMultidisciplinaryGene Expression ProfilingQInterleukin-9Cell DifferentiationGeneral ChemistryT-Lymphocytes Helper-InducerCell biologyMice Inbred C57BL030104 developmental biologyIRF1Interferon Regulatory Factorsbiology.protein030215 immunologyInterferon regulatory factorsmedicine.drugInterferon Regulatory Factor-1Nature communications
researchProduct

Innate lymphoid cells, precursors and plasticity

2016

Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well a…

0301 basic medicineCellular differentiationT cellCell PlasticityImmunologyBiology03 medical and health sciences0302 clinical medicineImmune systemCell PlasticitymedicineAnimalsHumansImmunology and AllergyCell Lineageskin and connective tissue diseasesPrecursor Cells T-LymphoidRegeneration (biology)Innate lymphoid cellGene Expression Regulation DevelopmentalCell DifferentiationT-Lymphocytes Helper-InducerImmunity InnateLymphocyte Subsetsbody regionsPhenotype030104 developmental biologyLymphatic systemmedicine.anatomical_structureImmunologyStem cellBiomarkersSignal TransductionT-Lymphocytes CytotoxicTranscription Factors030215 immunologyImmunology Letters
researchProduct

Transcutaneous immunization with CD40 ligation boosts cytotoxic T lymphocyte mediated antitumor immunity independent of CD4 helper cells in mice.

2018

Transcutaneous immunization (TCI) is a novel vaccination strategy that utilizes skin-associated lymphatic tissue to induce immune responses. Employing T-cell epitopes and the TLR7 agonist imiquimod onto intact skin mounts strong primary, but limited memory CTL responses. To overcome this limitation, we developed a novel imiquimod-containing vaccination platform (IMI-Sol) rendering superior primary CD8+ and CD4+ T-cell responses. However, it has been unclear whether IMI-Sol per se is restricted in terms of memory formation and tumor protection. In our present work, we demonstrate that the combined administration of IMI-Sol and CD40 ligation unleashes fullblown specific T-cell responses in th…

0301 basic medicineCytotoxicity ImmunologicGraft RejectionSkin NeoplasmsOvalbuminmedicine.medical_treatmentT cellImmunologyCD40 Ligand610 MedizinMelanoma ExperimentalPriming (immunology)Gene ExpressionAdministration Cutaneous03 medical and health sciencesMice0302 clinical medicineImmune system610 Medical sciencesmedicineImmunology and AllergyCytotoxic T cellAnimalsSkinCD40ImiquimodMembrane GlycoproteinsbiologyT-Lymphocytes Helper-InducerAllograftsMice Inbred C57BLCTL*030104 developmental biologymedicine.anatomical_structureToll-Like Receptor 7biology.proteinCancer researchImmunizationImmunotherapyAdjuvantImmunologic MemoryCD8030215 immunologyCD27 LigandT-Lymphocytes CytotoxicEuropean journal of immunologyReferences
researchProduct

Perturbation of Developmental Regulatory Gene Expression by a G-Quadruplex DNA Inducer in the Sea Urchin Embryo.

2018

The G-quadruplex (G4) is a four-stranded DNA structure identified in vivo in guanine-rich regions located in the promoter of a number of genes. Intriguing evidence suggested that small molecules acting as G4-targeting ligands could potentially regulate multiple cellular processes via either stabilizing or disruptive effects on G4 motifs. Research in this field aims to prove the direct role of G4 ligands and/or structures on a specific biological process in a complex living organism. In this study, we evaluate in vivo the effects of a nickel(II)-salnaphen-like complex, named Nisaln, a potent G4 binder and stabilizer, during embryogenesis of the sea urchin embryo. We describe developmental de…

0301 basic medicineEmbryo NonmammalianGene regulatory networksea urchin embryo.G-quadruplexLigandsBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCoordination ComplexesNickelAnimalsInducerGene Regulatory NetworksPromoter Regions GeneticGeneRegulator geneRegulation of gene expressionGene Expression Regulation DevelopmentalEmbryoDNACell biologyG-Quadruplexes030104 developmental biologyG-quadruplex DNAchemistrySea Urchins030217 neurology & neurosurgeryDNABiochemistry
researchProduct

IL ‐1 signaling is critical for expansion but not generation of autoreactive GM ‐ CSF + Th17 cells

2016

Abstract Interleukin‐1 (IL‐1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL‐1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL‐1 receptor type 1 (IL‐1R1)‐dependent IL‐1β expression by myeloid cells in the draining lymph nodes. This myeloid‐derived IL‐1β did not vitally contribute to the generation and plasticity of Th17 cells, but rather promoted the expansion of a GM‐CSF + Th17 cell subset, thereby enhancing its encephalitog…

0301 basic medicineEncephalomyelitis Autoimmune ExperimentalBiologymedicine.disease_causePertussis toxinGeneral Biochemistry Genetics and Molecular BiologyAutoimmunityMice03 medical and health sciences0302 clinical medicineMediatormedicineAnimalsInducerMolecular BiologyCell ProliferationGeneral Immunology and MicrobiologyGeneral NeuroscienceMultiple sclerosisExperimental autoimmune encephalomyelitisGranulocyte-Macrophage Colony-Stimulating FactorArticlesmedicine.diseaseCell biology030104 developmental biologyPertussis ToxinT cell subsetImmunologyTh17 CellsLymphInterleukin-1030215 immunologyThe EMBO Journal
researchProduct

Targeting cellular fatty acid synthesis limits T helper and innate lymphoid cell function during intestinal inflammation and infection

2019

CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacolog…

0301 basic medicineImmunologyBiologyMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineImmune systemRAR-related orphan receptor gammamedicineAnimalsImmunology and AllergyFatty acid synthesisBarrier functionLamina propriaEffectorFatty AcidsInnate lymphoid cellT-Lymphocytes Helper-InducerNuclear Receptor Subfamily 1 Group F Member 3ColitisInflammatory Bowel DiseasesImmunity InnateBiosynthetic PathwaysDisease Models Animal030104 developmental biologymedicine.anatomical_structurechemistryImmunologyLipogenesisBiomarkersAcetyl-CoA Carboxylase030215 immunologyMucosal Immunology
researchProduct