6533b854fe1ef96bd12af602
RESEARCH PRODUCT
Targeting cellular fatty acid synthesis limits T helper and innate lymphoid cell function during intestinal inflammation and infection
Rolf MüllerStefan FloessLuciana BerodMatthias LochnerMelanie GuderianPanagiota MamareliChia-wen LuJames R. CarlyleDavid S.j. AllanTim SparwasserFriederike KruseMark BrönstrupKatharina Roxsubject
0301 basic medicineImmunologyBiologyMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineImmune systemRAR-related orphan receptor gammamedicineAnimalsImmunology and AllergyFatty acid synthesisBarrier functionLamina propriaEffectorFatty AcidsInnate lymphoid cellT-Lymphocytes Helper-InducerNuclear Receptor Subfamily 1 Group F Member 3ColitisInflammatory Bowel DiseasesImmunity InnateBiosynthetic PathwaysDisease Models Animal030104 developmental biologymedicine.anatomical_structurechemistryImmunologyLipogenesisBiomarkersAcetyl-CoA Carboxylase030215 immunologydescription
CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacological inhibition of ACC1 by the natural compound soraphen A mirrored the anti-inflammatory effects of T-cell-specific targeting, but also enhanced susceptibility toward infection with C. rodentium. Further analysis revealed that deletion of ACC1 in RORγt+ innate lymphoid cells (ILC), but not dendritic cells or macrophages, decreased resistance to infection by interfering with IL-22 production and intestinal barrier function. Together, our study suggests pharmacological targeting of ACC1 as an effective approach for metabolic immune modulation of T-cell-driven intestinal inflammatory responses, but also reveals an important role of ACC1-mediated lipogenesis for the function of RORγt+ ILC.
year | journal | country | edition | language |
---|---|---|---|---|
2019-03-29 | Mucosal Immunology |