0000000000084634

AUTHOR

Tim Sparwasser

showing 20 related works from this author

The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis

2020

Summary: Hypoxia-inducible factor-1 alpha (HIF-1α) is considered a global regulator of cellular metabolism and innate immune cell functions. Intracellular pathogens such as Leishmania have been reported to manipulate host cell metabolism. Herein, we demonstrate that myeloid cells from myeloid-restricted HIF-1α-deficient mice and individuals with loss-of-function HIF1A gene polymorphisms are more susceptible to L. donovani infection through increased lipogenesis. Absence of HIF-1α leads to a defect in BNIP3 expression, resulting in the activation of mTOR and nuclear translocation of SREBP-1c. We observed the induction of lipogenic gene transcripts, such as FASN, and lipid accumulation in inf…

0301 basic medicineSREBP-1cHIF1A Gene[SDV]Life Sciences [q-bio]Leishmania donovaniHIF-1αGeneral Biochemistry Genetics and Molecular BiologyMitochondrial Proteins03 medical and health sciences0302 clinical medicinevisceral leishmaniasisAnimalsHumansMyeloid Cellslcsh:QH301-705.5GenelipogenesisPI3K/AKT/mTOR pathwayDisease ResistanceMice Inbred BALB CInnate immune systembiologyIntracellular parasiteLipogenesisMacrophagesTOR Serine-Threonine KinasesGenetic VariationMembrane Proteinsbiology.organism_classificationLeishmaniaHypoxia-Inducible Factor 1 alpha SubunitFASNLipidsmacrophages3. Good healthCell biologyUp-RegulationMice Inbred C57BL030104 developmental biologylcsh:Biology (General)myeloid cellsLipogenesisLeishmaniasis VisceralDisease SusceptibilityacetateSterol Regulatory Element Binding Protein 1030217 neurology & neurosurgeryLeishmania donovaniSignal Transduction
researchProduct

IL-33/ST2 pathway drives regulatory T cell dependent suppression of liver damage upon cytomegalovirus infection.

2017

Regulatory T (Treg) cells dampen an exaggerated immune response to viral infections in order to avoid immunopathology. Cytomegaloviruses (CMVs) are herpesviruses usually causing asymptomatic infection in immunocompetent hosts and induce strong cellular immunity which provides protection against CMV disease. It remains unclear how these persistent viruses manage to avoid induction of immunopathology not only during the acute infection but also during life-long persistence and virus reactivation. This may be due to numerous viral immunoevasion strategies used to specifically modulate immune responses but also induction of Treg cells by CMV infection. Here we demonstrate that liver Treg cells …

0301 basic medicineCytomegalovirus InfectionCellular immunityViral DiseasesPhysiologyvirusesCytomegalovirusT-Lymphocytes RegulatoryMice0302 clinical medicineImmunopathologyImmune PhysiologyInterleukin-33 mouse ; mouse cytomegalovirus ; ST2 protein mouse ; T-lymphocytes regulatoryCellular typesCytotoxic T cellBiology (General)Immune ResponseImmunity CellularMice Inbred BALB CImmune cellsvirus diseasesRegulatory T cells3. Good healthmedicine.anatomical_structureInfectious DiseasesLiverCytomegalovirus InfectionsWhite blood cellsAnatomyBIOMEDICINA I ZDRAVSTVO. Temeljne medicinske znanosti.Signal TransductionResearch ArticleCell biologyBlood cellsQH301-705.5Regulatory T cellImmunologyT cellschemical and pharmacologic phenomenaCytotoxic T cellsBiologyResearch and Analysis MethodsMicrobiologyVirusCell Line03 medical and health sciencesImmune systemImmunityVirologyGeneticsmedicineAnimalsMolecular Biology TechniquesMolecular BiologyMedicine and health sciencesBiology and life sciencesBIOMEDICINE AND HEALTHCARE. Basic Medical Sciences.RC581-607Interleukin-33VirologyInterleukin-1 Receptor-Like 1 ProteinInterleukin 33Mice Inbred C57BL030104 developmental biologyAnimal cellsImmunologyParasitologyImmunologic diseases. AllergySpleen030215 immunologyCloningPLoS pathogens
researchProduct

C-X-C Motif Chemokine Receptor 4 Blockade Promotes Tissue Repair After Myocardial Infarction by Enhancing Regulatory T Cell Mobilization and Immune-R…

2019

Background: Acute myocardial infarction (MI) elicits an inflammatory response that drives tissue repair and adverse cardiac remodeling. Inflammatory cell trafficking after MI is controlled by C-X-C motif chemokine ligand 12 (CXCL12) and its receptor, C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 antagonists mobilize inflammatory cells and promote infarct repair, but the cellular mechanisms are unclear. Methods: We investigated the therapeutic potential and mode of action of the peptidic macrocycle CXCR4 antagonist POL5551 in mice with reperfused MI. We applied cell depletion and adoptive transfer strategies using lymphocyte-deficient Rag1 knockout mice; DEREG mice, which express a diphth…

Receptors CXCR4Regulatory T cellCXCR4 antagonistSus scrofaAnti-Inflammatory AgentsMyocardial InfarctionNeovascularization PhysiologicMice TransgenicInflammation030204 cardiovascular system & hematologyT-Lymphocytes RegulatoryVentricular Function Left03 medical and health sciencesChemokine receptor0302 clinical medicineImmune systemPhysiology (medical)medicineAnimalsMyocardial infarction030304 developmental biology0303 health sciencesMobilizationVentricular Remodelingbusiness.industryMyocardiumProteinsDendritic CellsRecovery of FunctionRegulatory T cellsTissue repairmedicine.diseaseMyocardial ContractionBlockadeMice Inbred C57BLDisease Models Animalmedicine.anatomical_structureCancer researchmedicine.symptomCardiology and Cardiovascular MedicinebusinessSignal TransductionCirculation
researchProduct

Dendritic cell metabolism: moving beyond in vitro-culture-generated paradigms

2021

Dendritic cells (DCs) are key orchestrators of immunity and tolerance. It has become evident that DC function can be influenced by cellular metabolic programs. However, conclusions from early metabolic studies using in vitro GM-CSF DC cultures fail to correlate with bona fide DC populations. Here, we discuss the existing paradigms in the DC metabolism field, focusing on the limitations of the models utilized. Furthermore, we introduce alternative models to generate DCs in vitro that better emulate DCs found in vivo. Finally, we highlight new techniques to evaluate DC metabolism at the single-cell level. The combination of these two strategies could help advance the DC metabolism field towar…

0106 biological sciences0303 health sciencesBiomedical EngineeringCell DifferentiationBioengineeringDendritic CellsDendritic cellBiology01 natural sciencesIn vitro03 medical and health sciencesIn vivo010608 biotechnologyNeuroscienceFunction (biology)030304 developmental biologyBiotechnologyCurrent Opinion in Biotechnology
researchProduct

Regulatory T Cells in an Endogenous Mouse Lymphoma Recognize Specific Antigen Peptides and Contribute to Immune Escape.

2019

Abstract Foxp3+ regulatory T cells (Tregs) sustain immune homeostasis and may contribute to immune escape in malignant disease. As a prerequisite for developing immunologic approaches in cancer therapy, it is necessary to understand the ontogeny and the antigenic specificities of tumor-infiltrating Tregs. We addressed this question by using a λ-MYC transgenic mouse model of endogenously arising B-cell lymphoma, which mirrors key features of human Burkitt lymphoma. We show that Foxp3+ Tregs suppress antitumor responses in endogenous lymphoma. Ablation of Foxp3+ Tregs significantly delayed tumor development. The ratio of Treg to effector T cells was elevated in growing tumors, which could be …

0301 basic medicineGenetically modified mouseCancer ResearchLymphoma B-CellImmunologychemical and pharmacologic phenomenaMice TransgenicT-Lymphocytes RegulatoryEpitope03 medical and health sciences0302 clinical medicineAntigenCell Line TumorMHC class ImedicineAnimalsAntigensbiologyEffectorFOXP3hemic and immune systemsmedicine.diseaseLymphomaMice Inbred C57BL030104 developmental biologyTumor Escape030220 oncology & carcinogenesisCancer researchbiology.proteinTumor EscapePeptidesCancer immunology research
researchProduct

Regulatory T cells selectively preserve immune privilege of self-antigens during viral central nervous system infection.

2012

Abstract Regulatory T cells (Tregs) are important for the attenuation of immune reactions. During viral CNS infections, however, an indiscriminate maintenance of CNS immune privilege through Treg-mediated negative regulation could prevent autoimmune sequelae but impair the control of viral replication. We analyzed in this study the impact of Tregs on the development of acute viral encephalomyelitis, T cell-mediated antiviral protection, and prevention of CNS autoimmunity following intranasal infection with the gliatropic mouse hepatitis virus strain A59. To assess the contribution of Tregs in vivo, we specifically depleted CD4+Foxp3+ T cells in a diphtheria toxin-dependent manner. We found …

Receptors CXCR3T cellImmunologychemical and pharmacologic phenomenaAutoimmunityBiologyCD8-Positive T-Lymphocytesmedicine.disease_causeCXCR3Lymphocyte ActivationAutoantigensT-Lymphocytes RegulatoryLymphocyte DepletionAutoimmunity03 medical and health sciencesMice0302 clinical medicineCentral Nervous System InfectionsImmune privilegeImmunitymedicineImmunology and AllergyAnimalsHumansEncephalomyelitisAdministration Intranasal030304 developmental biologyCell Proliferation0303 health sciencesImmunity CellularMice Inbred BALB CMurine hepatitis virusFOXP3hemic and immune systemsForkhead Transcription Factors3. Good healthmedicine.anatomical_structureViral replicationImmunologyAcute DiseaseCD4 AntigensLymph NodesCoronavirus InfectionsCD8030215 immunologyJournal of immunology (Baltimore, Md. : 1950)
researchProduct

Superagonistic CD28 stimulation induces IFN‐γ release from mouse T helper 1 cells in vitro and in vivo

2020

Like human Th1 cells, mouse Th1 cells also secrete IFN-γ upon stimulation with a superagonistic anti-CD28 monoclonal antibody (CD28-SA). Crosslinking of the CD28-SA via FcR and CD40-CD40L interactions greatly increased IFN-γ release. Our data stress the utility of the mouse as a model organism for immune responses in humans.

0301 basic medicinemedicine.drug_classImmunologyved/biology.organism_classification_rank.speciesCD40 LigandStimulationchemical and pharmacologic phenomenaBiologyMonoclonal antibodyLymphocyte Activation03 medical and health sciencesInterferon-gammaMice0302 clinical medicineImmune systemCD28 AntigensIn vivomedicineImmunology and AllergyAnimalsHumansSecretionddc:610CD40 AntigensModel organismved/biologyCD28Antibodies Monoclonalhemic and immune systemsTh1 CellsIn vitroCell biology030104 developmental biology030215 immunologySignal Transduction
researchProduct

TLR7 controls VSV replication in CD169(+) SCS macrophages and associated viral neuroinvasion

2019

Vesicular stomatitis virus (VSV) is an insect-transmitted rhabdovirus that is neurovirulent in mice. Upon peripheral VSV infection, CD169+ subcapsular sinus (SCS) macrophages capture VSV in the lymph, support viral replication, and prevent CNS neuroinvasion. To date, the precise mechanisms controlling VSV infection in SCS macrophages remain incompletely understood. Here, we show that Toll-like receptor-7 (TLR7), the main sensing receptor for VSV, is central in controlling lymph-borne VSV infection. Following VSV skin infection, TLR7−/− mice display significantly less VSV titers in the draining lymph nodes (dLN) and viral replication is attenuated in SCS macrophages. In contrast to effects o…

lcsh:Immunologic diseases. Allergy0301 basic medicinevirusesImmunologyMedizinDENDRITIC CELLSRIG-IACTIVATION03 medical and health sciences0302 clinical medicinesubcapsular sinus macrophagesSUBCAPSULAR SINUS MACROPHAGESImmunitySIMULIUM-VITTATUM DIPTERAINFECTIONImmunology and Allergyinnate immunityvirus replicationHost factorconditional knock-out miceInnate immune systemScience & TechnologyLYMPH-NODESbiologysubcutaneous infectionPattern recognition receptorpattern recognition receptorsvirus diseasesTLR7VESICULAR STOMATITIS-VIRUSbiology.organism_classificationVirologyddc:Toll-like receptor 7stomatognathic diseases030104 developmental biologyViral replicationVesicular stomatitis virusNEW-JERSEY SEROTYPEINNATE IMMUNITYvesicular stomatitis viruslcsh:RC581-607Viral loadLife Sciences & Biomedicine030215 immunology
researchProduct

Regulating T-cell differentiation through the polyamine spermidine

2021

Background The cross-talk between the host and its microbiota plays a key role in the promotion of health. The production of metabolites such as polyamines by intestinal-resident bacteria is part of this symbiosis shaping host immunity. The polyamines putrescine, spermine, and spermidine are abundant within the gastrointestinal tract and might substantially contribute to gut immunity. Objective We aimed to characterize the polyamine spermidine as a modulator of T-cell differentiation and function. Methods Naive T cells were isolated from wild-type mice or cord blood from healthy donors and submitted to polarizing cytokines, with and without spermidine treatment, to evaluate CD4+ T-cell diff…

0301 basic medicineSpermine oxidaseSpermidineImmunologySpermineBiologyT-Lymphocytes RegulatoryOrnithine decarboxylaseMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAnimalsImmunology and AllergyImmunity MucosalMice KnockoutMice Inbred BALB CFOXP3Cell DifferentiationDendritic cellColitisCell biologySpermidine030104 developmental biologychemistryCardiovascular and Metabolic DiseasesPutrescinePolyamine030215 immunology
researchProduct

Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis

2019

Summary While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressi…

0301 basic medicineMitochondrial translationmedicine.medical_treatmentT-LymphocytesCellMitochondrionmedicine.disease_causeRibosomemitochondrial translationOxidative PhosphorylationantibioticsAutoimmunityACTIVATIONMice0302 clinical medicineribosome-targetingMedicine and Health SciencesImmunology and AllergyTRANSCRIPTION FACTORMolecular Targeted TherapyMice Knockout0303 health sciencesEffectorExperimental autoimmune encephalomyelitisautoimmunityCell DifferentiationPeptide Elongation Factor GAnti-Bacterial Agents3. Good healthCell biologymitochondriaInfectious DiseasesCytokinemedicine.anatomical_structureRESPIRATION030220 oncology & carcinogenesisEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisT cellImmunologyINHIBITIONT cellsBiologyOXAZOLIDINONEPeptides CyclicArticleMitochondrial Proteins03 medical and health sciencesNAD+medicineAnimalsHumanselongation factor G1030304 developmental biologyAutoimmune diseaseBacteriaLinezolidBiology and Life SciencesPATHWAYSDNANADmedicine.diseaseIn vitroMice Inbred C57BL030104 developmental biologyTh17 CellsArgyrinCHLORAMPHENICOLMEMBRANERibosomesImmunity
researchProduct

The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3+ Regulatory T Cells

2019

Summary: Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating…

0301 basic medicineFOXP3PATZ1chemical and pharmacologic phenomenaBiologyTreg cellGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineIntestinal inflammationmedicineForkhead Box Protein P3Immune homeostasisColitisTranscription factorlcsh:QH301-705.5DSS-induced colitisMAZRT(reg)FOXP3hemic and immune systemsmedicine.diseaseCell biology030104 developmental biologyregulatory T cellslcsh:Biology (General)030217 neurology & neurosurgeryCell Reports
researchProduct

Targeting cellular fatty acid synthesis limits T helper and innate lymphoid cell function during intestinal inflammation and infection

2019

CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacolog…

0301 basic medicineImmunologyBiologyMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineImmune systemRAR-related orphan receptor gammamedicineAnimalsImmunology and AllergyFatty acid synthesisBarrier functionLamina propriaEffectorFatty AcidsInnate lymphoid cellT-Lymphocytes Helper-InducerNuclear Receptor Subfamily 1 Group F Member 3ColitisInflammatory Bowel DiseasesImmunity InnateBiosynthetic PathwaysDisease Models Animal030104 developmental biologymedicine.anatomical_structurechemistryImmunologyLipogenesisBiomarkersAcetyl-CoA Carboxylase030215 immunologyMucosal Immunology
researchProduct

TLR4 abrogates the Th1 immune response through IRF1 and IFN-β to prevent immunopathology during L. infantum infection

2020

A striking feature of human visceral leishmaniasis (VL) is chronic inflammation in the spleen and liver, and VL patients present increased production levels of multiple inflammatory mediators, which contribute to tissue damage and disease severity. Here, we combined an experimental model with the transcriptional profile of human VL to demonstrate that the TLR4-IFN-β pathway regulates the chronic inflammatory process and is associated with the asymptomatic form of the disease. Tlr4-deficient mice harbored fewer parasites in their spleen and liver than wild-type mice. TLR4 deficiency enhanced the Th1 immune response against the parasite, which was correlated with an increased activation of de…

PhysiologyGene ExpressionWhite Blood CellsMiceCell SignalingAnimal CellsImmune PhysiologyZoonosesImmunopathologyMedicine and Health SciencesMembrane Receptor SignalingBiology (General)Immune ResponseLeishmaniasisProtozoansLeishmaniaMice Knockout0303 health sciencesbiologyT Cells030302 biochemistry & molecular biologyEukaryotaImmune Receptor SignalingInfectious Diseasesmedicine.anatomical_structureLeishmaniasis VisceralCellular Typesmedicine.symptomLeishmania infantumResearch ArticleSignal TransductionNeglected Tropical DiseasesQH301-705.5Leishmania InfantumImmune CellsImmunologySpleenInflammationLEISHMANIOSE VISCERALMicrobiology03 medical and health sciencesImmune systemVirologyParasitic DiseasesGeneticsmedicineAnimalsMolecular Biology030304 developmental biologyInflammationProtozoan InfectionsBlood CellsOrganismsBiology and Life SciencesCell BiologyInterferon-betaTh1 CellsRC581-607Tropical Diseasesmedicine.diseasebiology.organism_classificationParasitic ProtozoansToll-Like Receptor 4IRF1Visceral leishmaniasisImmunologyTLR4ParasitologyImmunologic diseases. AllergySpleenInterferon Regulatory Factor-1
researchProduct

Author response: Notch and TLR signaling coordinate monocyte cell fate and inflammation

2020

medicine.anatomical_structureMonocytemedicineInflammationmedicine.symptomBiologyCell fate determinationCell biology
researchProduct

Epithelium‐specific MyD88 signaling, but not DCs or macrophages, control acute intestinal infection with Clostridium difficile

2019

Infection with Clostridium difficile is one of the major causes of health care acquired diarrhea and colitis. Signaling though MyD88 downstream of TLRs is critical for initiating the early protective host response in mouse models of C. difficile infection (CDI). In the intestine, MyD88 is expressed in various tissues and cell types, such as the intestinal epithelium and mononuclear phagocytes (MNP), including DC or macrophages. Using a genetic gain-of-function system, we demonstrate here that restricting functional MyD88 signaling to the intestinal epithelium, but also to MNPs is sufficient to protect mice during acute CDI by upregulation of the intestinal barrier function and recruitment o…

0301 basic medicineCell typeImmunologyBiologyMice03 medical and health sciences0302 clinical medicineDownregulation and upregulationmedicineAnimalsImmunology and AllergyIntestinal MucosaColitisEnterocolitis PseudomembranousBarrier functionClostridioides difficileMacrophagesDendritic CellsClostridium difficilemedicine.diseaseIntestinal epitheliumPhenotypeEpitheliumDisease Models Animal030104 developmental biologymedicine.anatomical_structureHost-Pathogen InteractionsMyeloid Differentiation Factor 88ImmunologySignal Transduction030215 immunologyEuropean Journal of Immunology
researchProduct

Notch and TLR signaling coordinate monocyte cell fate and inflammation

2020

AbstractConventional Ly6Chi monocytes have developmental plasticity for a spectrum of differentiated phagocytes. Here we show, using conditional deletion strategies in a mouse model of Toll-like receptor (TLR) 7-induced inflammation, that the spectrum of developmental cell fates of Ly6Chi monocytes, and the resultant inflammation, is coordinately regulated by TLR and Notch signaling. Cell-intrinsic Notch2 and TLR7-Myd88 pathways independently and synergistically promote Ly6Clo patrolling monocyte development from Ly6Chi monocytes under inflammatory conditions, while impairment in either signaling axis impairs Ly6Clo monocyte development. At the same time, TLR7 stimulation in the absence of …

0301 basic medicineMouseQH301-705.5ScienceNotch signaling pathwayInflammationSpleenBiologyCell fate determinationSystemic inflammationGeneral Biochemistry Genetics and Molecular BiologyMonocytesimmunology03 medical and health sciencesMice0302 clinical medicineImmunology and InflammationmedicineAnimalsReceptor Notch2Biology (General)Receptormousemacrophage differentiationInflammationMembrane GlycoproteinsGeneral Immunology and MicrobiologyGeneral NeuroscienceMonocyteQRCell DifferentiationTLR signalingGeneral MedicineTLR7notch signalingCell biology030104 developmental biologymedicine.anatomical_structureToll-Like Receptor 7inflammationmonocytes and macrophagesMedicinemedicine.symptom030215 immunologySignal TransductionResearch Article
researchProduct

Enzymatic Activity of HPGD in Treg Cells Suppresses Tconv Cells to Maintain Adipose Tissue Homeostasis and Prevent Metabolic Dysfunction.

2019

Summary Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. C…

0301 basic medicineanalogs & derivatives [Dinoprostone]Malemetabolism [Diabetes Mellitus Type 2]Adipose tissueLymphocyte Activation15-ketoprostaglandin E2T-Lymphocytes RegulatoryJurkat cellsJurkat CellsMice0302 clinical medicineimmunology [Lymphocyte Activation]genetics [Insulin Resistance]STAT5 Transcription FactorHomeostasisImmunology and AllergyTissue homeostasisgenetics [Hydroxyprostaglandin Dehydrogenases]Mice Knockoutcytology [Intra-Abdominal Fat]enzymology [T-Lymphocytes Regulatory]FOXP3hemic and immune systems3T3 CellsCell biologyInfectious Diseases030220 oncology & carcinogenesisHydroxyprostaglandin Dehydrogenasesmedicine.symptomimmunology [T-Lymphocytes Regulatory]metabolism [STAT5 Transcription Factor]Immunologymetabolism [Dinoprostone]chemical and pharmacologic phenomenaInflammationIntra-Abdominal FatBiologyDinoprostoneCell Line03 medical and health sciencesmetabolism [Hydroxyprostaglandin Dehydrogenases]immunology [Homeostasis]medicineAnimalsHumansddc:610immunology [Intra-Abdominal Fat]HEK 293 cells030104 developmental biologyHEK293 CellsDiabetes Mellitus Type 2Cell cultureInsulin ResistanceHomeostasis
researchProduct

Inflammation in the Human Periodontium Induces Downregulation of the α1- and β1-Subunits of the sGC in Cementoclasts

2021

Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxidized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the &alpha

Periodontium0301 basic medicinealveolar bonecementoclastslcsh:Chemistrychemistry.chemical_compound0302 clinical medicineCathepsin Kheterocyclic compoundsperiodontitisCyclic GMPlcsh:QH301-705.5SpectroscopyGeneral MedicineComputer Science ApplicationsResorptionCell biologymedicine.anatomical_structurecardiovascular systemOxidation-Reductioncementuminorganic chemicalsPeriodontal LigamentIronAntigens Differentiation MyelomonocyticHemeArticleCatalysisNitric oxideInorganic Chemistry03 medical and health sciencesstomatognathic systemAntigens CDnitric oxideOsteoclastmedicineAnimalsHumansddc:610CementumPhysical and Theoretical ChemistryMolecular BiologyCyclic guanosine monophosphateInflammationOrganic Chemistrysoluble guanylyl cyclase030206 dentistryPeriodontiumcGMPosteoclasts030104 developmental biologyGene Expression Regulationlcsh:Biology (General)lcsh:QD1-999chemistrySoluble guanylyl cyclaseInternational Journal of Molecular Sciences
researchProduct

A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult.

2019

International audience; Microbes colonize all body surfaces at birth and participate in the development of the immune system. In newborn mammals, the intestinal microbiota is first shaped by the dietary and immunological components of milk and then changes upon the introduction of solid food during weaning. Here, we explored the reactivity of the mouse intestinal immune system during the first weeks after birth and into adulthood. At weaning, the intestinal microbiota induced a vigorous immune response—a “weaning reaction”—that was programmed in time. Inhibition of the weaning reaction led to pathological imprinting and increased susceptibility to colitis, allergic inflammation, and cancer …

0301 basic medicinecolitis[SDV]Life Sciences [q-bio]short-chain fatty acidsImmunologyRetinoic acidTretinoinWeaningBiologyT-Lymphocytes Regulatoryregulatory T cellsAllergic inflammation03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineImmune systemRAR-related orphan receptor gammamicrobiotamedicineImmunology and AllergyWeaningAnimalsinflammatory pathologyColitisImprinting (psychology)Intestinal Mucosaneonatal periodNuclear Receptor Subfamily 1 Group F Member 3medicine.diseaseFatty Acids Volatile3. Good healthGastrointestinal Microbiome[SDV] Life Sciences [q-bio]Mice Inbred C57BL030104 developmental biologyInfectious DiseaseschemistryAnimals NewbornSolid food030220 oncology & carcinogenesisImmunologymucosal immunityImmunity
researchProduct

CD4+ T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria

2021

The progression through different steps of T-cell development, activation, and effector function is tightly bound to specific cellular metabolic processes. Previous studies established that T-effector cells have a metabolic bias toward aerobic glycolysis, whereas naive and regulatory T cells mainly rely on oxidative phosphorylation. More recently, the field of immunometabolism has drifted away from the notion that mitochondrial metabolism holds little importance in T-cell activation and function. Of note, T cells possess metabolic promiscuity, which allows them to adapt their nutritional requirements according to the tissue environment. Altogether, the integration of these metabolic pathway…

0301 basic medicineChemistryCatabolismImmunologyOxidative phosphorylationMitochondrionCell biologyCitric acid cycle03 medical and health sciencesMetabolic pathway030104 developmental biology0302 clinical medicineAnaerobic glycolysis030220 oncology & carcinogenesisImmunology and AllergyGlycolysisBeta oxidationJournal of Allergy and Clinical Immunology
researchProduct