6533b871fe1ef96bd12d1c87
RESEARCH PRODUCT
A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult.
Marion BérardTim SparwasserRute MarquesRute MarquesSophie DulauroySophie DulauroyClara CousuClara CousuShahed Al BounnyShahed Al BounnyGérard EberlGérard EberlFrançois DejardinFrançois DejardinNadine Cerf-bensussanNadine Cerf-bensussanZiad Al NabhaniZiad Al Nabhanisubject
0301 basic medicinecolitis[SDV]Life Sciences [q-bio]short-chain fatty acidsImmunologyRetinoic acidTretinoinWeaningBiologyT-Lymphocytes Regulatoryregulatory T cellsAllergic inflammation03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineImmune systemRAR-related orphan receptor gammamicrobiotamedicineImmunology and AllergyWeaningAnimalsinflammatory pathologyColitisImprinting (psychology)Intestinal Mucosaneonatal periodNuclear Receptor Subfamily 1 Group F Member 3medicine.diseaseFatty Acids Volatile3. Good healthGastrointestinal Microbiome[SDV] Life Sciences [q-bio]Mice Inbred C57BL030104 developmental biologyInfectious DiseaseschemistryAnimals NewbornSolid food030220 oncology & carcinogenesisImmunologymucosal immunitydescription
International audience; Microbes colonize all body surfaces at birth and participate in the development of the immune system. In newborn mammals, the intestinal microbiota is first shaped by the dietary and immunological components of milk and then changes upon the introduction of solid food during weaning. Here, we explored the reactivity of the mouse intestinal immune system during the first weeks after birth and into adulthood. At weaning, the intestinal microbiota induced a vigorous immune response—a “weaning reaction”—that was programmed in time. Inhibition of the weaning reaction led to pathological imprinting and increased susceptibility to colitis, allergic inflammation, and cancer later in life. Prevention of this pathological imprinting was associated with the generation of RORγt+ regulatory T cells, which required bacterial and dietary metabolites—short-chain fatty acids and retinoic acid. Thus, the weaning reaction to microbiota is required for immune ontogeny, the perturbation of which leads to increased susceptibility to immunopathologies later in life.
year | journal | country | edition | language |
---|---|---|---|---|
2019-03-19 | Immunity |