Search results for "Industrial and Manufacturing Engineering"

showing 10 items of 1866 documents

Uncovering Technological and Environmental Potentials of Aluminum Alloy Scraps Recycling Through Friction Stir Consolidation

2020

Conventional metal chips recycling processes are energy-intensive with low efficiency and permanent material losses during re-melting. Solid state recycling allows direct recycling of metal scraps into semi-finished products. It is expected that this process category would lower the environmental performance of metals recycling. Friction Stir Consolidation is a new solid-state technique taking advantage of friction heat generation and severe plastic deformation to consolidate chips into billets. In this research, the feasibility of Friction Stir Consolidation as aluminum chips recycling process is analyzed. Specifically, an experimental campaign has been carried out with varying main proces…

0209 industrial biotechnologyMaterials sciencePrimary energySolid bondingAlloySolid-stateSustainable manufacturingchemistry.chemical_elementFriction stir consolidation02 engineering and technologyengineering.materialIndustrial and Manufacturing Engineering020901 industrial engineering & automationAluminiumManagement of Technology and InnovationGeneral Materials ScienceRecyclingSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneConsolidation (soil)Renewable Energy Sustainability and the EnvironmentMechanical EngineeringMetallurgy021001 nanoscience & nanotechnologychemistryHeat generationengineeringSevere plastic deformation0210 nano-technologyEfficient energy useAluminum
researchProduct

Impact des conditions d'usinage sur la zone du matériau affectée par le procédé

2007

Colloque avec actes et comité de lecture. Internationale.; International audience; Les procédés d'usinage peuvent créer des contraintes résiduelles à la surface des pièces usinées et ainsi modifier la microstructure et la texture de la matière proche de la surface. De tels changements sont importants pour l'étude du comportement des pièces au cours du temps. Il est alors nécessaire de quantifier les contraintes résiduelles, les composantes de texture et de déterminer la microstructure induite par l'usinage pour comprendre et prédire le comportement des surfaces considérées. Dans cette étude, le matériau cuivre pur a été choisi et considéré comme un "système modèle". En tournage, l'influence…

0209 industrial biotechnologyMaterials scienceScanning electron microscopecontraintes02 engineering and technologySurface finishIndustrial and Manufacturing Engineering020901 industrial engineering & automationOpticsMachiningResidual stressGeneral Materials ScienceTexture (crystalline)LubricantComposite materialtournagezone affectéebusiness.industryMechanical EngineeringSurface stress[PHYS.MECA]Physics [physics]/Mechanics [physics]021001 nanoscience & nanotechnologyMicrostructure[PHYS.MECA] Physics [physics]/Mechanics [physics]0210 nano-technologybusiness
researchProduct

Application of linear friction welding for joining ultrafine grained aluminium

2020

Abstract Ultrafine grained (UFG) materials are of great potential in industry due to their enhanced mechanical strength and other promising features, such as ability to superplastic deformation or excellent corrosion resistance. Nevertheless, one of the main limitations lies in their low thermal stability, which leads to excessive grain growth at elevated temperature. It influences mainly further processes performed at high temperature, such as joining. It causes detrimental problems during conventional fusion welding, as significant grain growth is observed and therefore the advantages as a result of small average grain size disappear. Therefore, the idea of applying solid state joining pr…

0209 industrial biotechnologyMaterials scienceStrategy and ManagementMetallurgySuperplasticity02 engineering and technologyWeldingManagement Science and Operations Research021001 nanoscience & nanotechnologyIndustrial and Manufacturing EngineeringGrain sizelaw.inventionGrain growthFusion welding020901 industrial engineering & automationSevere plastic deformationlawUltimate tensile strengthAluminiumFriction weldingUltrafine grained microstructureDeformation (engineering)0210 nano-technologyLinear friction weldingSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJournal of Manufacturing Processes
researchProduct

Stable layer-building strategy to enhance cold-spray-based additive manufacturing

2020

Abstract Cold spray (CS) has recently become one of the popular additive manufacturing (AM) processes for its advantages: high-forming efficiency, low temperature, and no phase changing of materials. These advantages may make CS able to form large volume objects and possibly directly iterate with material-removing processes to become a hybrid AM process. Current research proposes using a bulk-based volume-forming strategy (e.g. a tessellation-based method) for volume building. Although it can form 3D volumes, the control of the process is difficult and it has limitations in forming complex 3D near-net-shapes with acceptable accuracy. This also conflicts with the basic principle of AM, where…

0209 industrial biotechnologyMaterials scienceTessellationbusiness.industryBiomedical EngineeringProcess (computing)Volume (computing)Gas dynamic cold spray02 engineering and technologyKinematicsBenchmarking021001 nanoscience & nanotechnologyIndustrial and Manufacturing Engineering[SPI]Engineering Sciences [physics]020901 industrial engineering & automationProcess controlGeneral Materials ScienceLayer (object-oriented design)0210 nano-technologyProcess engineeringbusinessEngineering (miscellaneous)
researchProduct

Decorous combinatorial lower bounds for row layout problems

2020

Abstract In this paper we consider the Double-Row Facility Layout Problem (DRFLP). Given a set of departments and pairwise transport weights between them the DRFLP asks for a non-overlapping arrangement of the departments along both sides of a common path such that the weighted sum of the center-to-center distances between the departments is minimized. Despite its broad applicability in factory planning, only small instances can be solved to optimality in reasonable time. Apart from this even deriving good lower bounds using existing integer programming formulations and branch-and-cut methods is a challenging problem. We focus here on deriving combinatorial lower bounds which can be compute…

0209 industrial biotechnologyMathematical optimization021103 operations researchInformation Systems and ManagementGeneral Computer ScienceLinear programmingComputer scienceHeuristicConnection (vector bundle)0211 other engineering and technologies02 engineering and technologyManagement Science and Operations ResearchStar (graph theory)Industrial and Manufacturing EngineeringSet (abstract data type)020901 industrial engineering & automationModeling and SimulationFactory (object-oriented programming)Pairwise comparisonFocus (optics)Integer programmingEuropean Journal of Operational Research
researchProduct

Aluminum to titanium laser welding-brazing in V-shaped grooveI

2017

International audience; Laser assisted joining of AA5754 aluminum alloy to T40 titanium with use of Al-Si filler wires was carried out. Continuous Yb:YAG laser beam was shaped into double spot tandem and defocalized to cover larger interaction zone in V shaped groove. Experimental design method was applied to study the influence of operational parameters on the tensile properties of the joints. Microstructure examination and fractography study were carried out to understand the relation between local phase content and fracture mode.Within defined window of operational parameters, statistically important factors that influenced the strength of T40 to AA5754 joints in V groove configuration w…

0209 industrial biotechnologyMatériaux [Sciences de l'ingénieur]Materials science[ SPI.MECA ] Engineering Sciences [physics]/Mechanics [physics.med-ph][ SPI.MAT ] Engineering Sciences [physics]/MaterialsFractography02 engineering and technologyIndustrial and Manufacturing Engineering[SPI.MAT]Engineering Sciences [physics]/Materials020901 industrial engineering & automationUltimate tensile strengthBrazingTitanium alloysJoint (geology)Groove (engineering)Filler metalMécanique [Sciences de l'ingénieur]MetallurgyMetals and AlloysLaser beam weldingTitanium alloy[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]021001 nanoscience & nanotechnologyAluminum alloysComputer Science ApplicationsModeling and SimulationCeramics and CompositesLaser weldingDissimilar metal joint0210 nano-technology
researchProduct

Online dimensional control of rolled steel profiles using projected fringes

2020

AbstractFringe projection is a versatile method for mapping the topography of surfaces. In this paper, it is used to measure the defects on the head of railroad rails while the rails are moving. Railroad rails are made by hot rolling. The quality of the finished product is generally good, but surface texture will deteriorate with increasing temperature. A method for online inspection therefore is very desirable. In the present experiment, dimensional inspection of the railroad rails was made online while moving at a speed of 1–2 m/s. Therefore, it is important to minimize the registration time. To achieve this, we apply a method of fringe location with sub-pixel accuracy that requires only …

0209 industrial biotechnologyMeasure (data warehouse)Computer scienceMechanical EngineeringMechanical engineering02 engineering and technologySurface finish01 natural sciencesIndustrial and Manufacturing EngineeringComputer Science ApplicationsStructured-light 3D scanner010309 opticsVDP::Teknologi: 500020901 industrial engineering & automationControl and Systems Engineering0103 physical sciencesHead (vessel)Software
researchProduct

Microstructural, mechanical and energy demand characterization of alternative WAAM techniques for Al-alloy parts production

2020

Abstract Additive manufacturing (AM) processes are gathering momentum as an alternative to conventional manufacturing processes. A research effort is being made worldwide to identify the most promising AM approaches. Within this category, wire arc additive manufacturing (WAAM) is among the most interesting, especially when large parts must be manufactured. In this paper, two different WAAM deposition techniques suitable for the deposition of Aluminum alloys, Cold Metal Transfer (CMT) and CMT mix drive, are analyzed and compared. With the aim of obtaining a clear picture concerning the two different techniques, microstructural analyses, mechanical property evaluation and electrical energy de…

0209 industrial biotechnologyMechanical propertyEnergy demandMaterials sciencebusiness.industryElectric potential energyAlloy02 engineering and technologyengineering.materialAdditive manufacturing Energy efficiency Mechanical properties WAAMIndustrial and Manufacturing EngineeringCharacterization (materials science)020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringengineeringProduction (economics)Deposition (phase transition)Metal transferProcess engineeringbusinessSettore ING-IND/16 - Tecnologie E Sistemi Di Lavorazione
researchProduct

Analysis of Linear Feedback Position Control in Presence of Presliding Friction

2016

0209 industrial biotechnologyObserver (quantum physics)Computer scienceMechanical Engineering020208 electrical & electronic engineeringEnergy Engineering and Power TechnologyControl engineering02 engineering and technologyServomechanismMotion controlIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationControl theorylawAutomotive Engineering0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringPosition controlIEEJ Journal of Industry Applications
researchProduct

Integrated WAAM-Subtractive Versus Pure Subtractive Manufacturing Approaches: An Energy Efficiency Comparison

2019

Over the last years, additive manufacturing (AM) has been gathering momentum both in the academic and in the industrial world. Besides the obvious benefits in terms of flexibility and process capabilities, the environmental performance of such processes has still to be properly analyzed. Actually, the advantages of additive manufacturing over conventional processes are not obvious. Indeed, different manufacturing approaches result in different amounts of involved material and in different processing energy demands. Environmental comparative analyses are hence crucial to properly characterize AM processes. In this paper, an energetic comparison between the emerging wire arc additive manufact…

0209 industrial biotechnologyPrimary energyAdditive manufacturingProcess (engineering)Computer science02 engineering and technologyIndustrial and Manufacturing Engineering020901 industrial engineering & automationMachiningAdditive manufacturing; Energy efficiency; Process comparisonManagement of Technology and InnovationComponent (UML)General Materials ScienceProcess engineeringSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneFlexibility (engineering)Subtractive colorRenewable Energy Sustainability and the Environmentbusiness.industryMechanical Engineering021001 nanoscience & nanotechnologyEnergy efficiencyProcess comparison0210 nano-technologybusinessEnergy (signal processing)Efficient energy useInternational Journal of Precision Engineering and Manufacturing-Green Technology
researchProduct