Search results for "Inelastic Scattering"
showing 10 items of 592 documents
"Table 2" of "A study of strange particle production in nu/mu charged current interactions in the NOMAD experiment."
2002
Measured yields as a function of E, the neutrino energy.
"Table 7" of "A study of strange particle production in nu/mu charged current interactions in the NOMAD experiment."
2002
Ratios of measured yields for K0S/LAMBDA and LAMBDA/LAMBDABAR as a functionof E, the neutrino energy.
Solid-State Analog of an Optical Interferometer
2004
To some extend one may treat a metal ring with two probes as a solid-state analog of an optical interferometer. One node can be considered as a beam splitter (bi-prism, for example), and the electric current at the other node as an equivalent to a light intensity of an interference pattern formed at a screen. In optics, to obtain a stationary pattern one should use a monochromatic source of radiation, as afterwards in a conventional passive media (i.e. air) the phase of the radiation is preserved. On the contrary, in solids the phase of a conducting electron wavefunction is randomly altered due to inelastic collisions (mainly phonons at high temperatures). Hence, to satisfy the condition of…
EPPS16 - First nuclear PDFs to include LHC data
2017
We present results of our recent EPPS16 global analysis of NLO nuclear parton distribution functions (nPDFs). For the first time, dijet and heavy gauge boson production data from LHC proton-lead collisions have been included in a global fit. Especially, the CMS dijets play an important role in constraining the nuclear effects in gluon distributions. With the inclusion of also neutrino-nucleus deeply-inelastic scattering and pion-nucleus Drell-Yan data and a proper treatment of isospin-corrected data, we were able to free the flavor dependence of the valence and sea quark nuclear modifications for the first time. This gives us less biased, yet larger, flavor by flavor uncertainty estimates. …
Neutron-scattering studies on CeM2Ge2(M=Ag, Au, and Ru)
1992
The results of elastic, quasielastic, and inelastic neutron-scattering studies on polycrystalline CeM 2 Ge 2 (M=Ag, Au, and Ru) are presented. All compounds reveal long-range magnetic order at low temperatures. Ferromagnetic (M=Ru), antiferromagnetic (M=Au), and incommensurate (M=Ag) structures were detected. Using time-of-flight (TOF) techniques, the crystalline electric-field splittings were determined. With high-resolution TOF experiments the temperature and wave-vector dependence of the magnetic relaxation rate was studied
Inelastic Neutron Scattering Experiments on Van der Waals Glasses - A Test of Recent Microscopic Theories of the Glass Transition
1989
Etude realisee sur un verre d'o-terphenyle afin de montrer l'existence d'une relaxation secondaire presentant des caracteristiques inhabituelles et le comportement Kohbrausch de la fonction de correlation de densite decrivant la relaxation structurale
Measurement of the spin-dependent structure function g1(x) of the deuteron
1993
We report on the first measurement of the spin-dependent structure function g1d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006<x<0.6, 1 GeV2<Q2<30 GeV2. The first moment, Γ1d=sh{phonetic}01 g1d dx=0.023±0.020 (stat.) ± 0.015 (syst.), is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g1p, we infer the first moment of the spin-dependent neutron structure function g1n. The difference Γ1p-Γ1n=0.20 ±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ1p-Γ1n=0.191 ±0.002.
Clusterization and Strong Coulpled-Channels Effects in Deuteron Interaction with 9Be Nuclei
2019
Angular distributions of protons, deuterons, tritons and alphaparticles emitted in the d + 9Be reaction at Elab=19.5 and 35.0 MeV have been measured. The elastic scattering channel is analysed in the framework of both the Optical Model and the Coupled-Channel approach. The interaction potential of the d + 9Be system is calculated in the framework of the Double-Folding model using the α + α + n three-body wave function of the 9Be nucleus. The (d, p) and (d, t) one-nucleon-transfer reactions are analysed within the coupledreaction-channel approach. The spectroscopic amplitudes for the different nuclear cluster configurations are calculated. Differential cross sections for the reaction channel…
NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering
2018
International audience; The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result.In this Wh…
The Large Hadron–Electron Collider at the HL-LHC
2021
The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LH…