Search results for "Infrared"
showing 10 items of 2110 documents
Ethanol Controls the Self-Assembly and Mesoscopic Properties of Human Insulin Amyloid Spherulites.
2018
Protein self-assembly into amyloid fibrils or highly hierarchical superstructures is closely linked to neurodegenerative pathologies as Alzheimer's and Parkinson's diseases. Moreover, protein assemblies also emerged as building blocks for bioinspired nanostructured materials. In both the above mentioned fields, the main challenge is to control the growth and properties of the final protein structure. This relies on a more fundamental understanding of how interactions between proteins can determine structures and functions of biomolecular aggregates. Here, we identify a striking effect of the hydration of the single human insulin molecule and solvent properties in controlling hydrophobicity/…
2017
Functional near infrared spectroscopy (fNIRS) is a promising neuroimaging method for investigating networks of cortical regions over time. We propose a directed effective connectivity method (TPDC) allowing the capture of both time and frequency evolution of the brain’s networks using fNIRS data acquired from healthy subjects performing a continuous finger-tapping task. Using this method we show the directed connectivity patterns among cortical motor regions involved in the task and their significant variations in the strength of information flow exchanges. Intra and inter-hemispheric connections during the motor task with their temporal evolution are also provided. Characterisation of the …
Uptake of polyphosphate microparticles in vitro (SaOS-2 and HUVEC cells) followed by an increase of the intracellular ATP pool size
2017
Recently two approaches were reported that addressed a vitally important problem in regenerative medicine, i. e. the successful treatment of wounds even under diabetic conditions. Accordingly, these studies with diabetic rabbits [Sarojini et al. PLoS One 2017, 12(4):e0174899] and diabetic mice [Müller et al. Polymers 2017, 9, 300] identified a novel (potential) target for the acceleration of wound healing in diabetes. Both studies propose a raise of the intracellular metabolic energy status via exogenous administration either of ATP, encapsulated into lipid vesicles, or of polyphosphate (polyP) micro-/nanoparticles. Recently this physiological polymer, polyP, was found to release metabolic …
FT-IR spectroscopy : A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grap…
2016
International audience; The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FF-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the sp…
Endoscopic near infrared and indocyanine green to verify the viability of the subcutaneous flap for vulvar cancer.
2019
Abstract Introduction Vulvar cancer often requires radical vulvectomy with subsequent vulvar flap. Approximately in 20–60% of cases, there are post-operative complications ranging from infection to flap necrosis that often require reoperation. Several methods have been described to verify the vitality of the flap, but these are often expensive and require specific machinery that is not generally present in a gynecological clinic. In this case report, we present a viability verification of V Y fasciocutaneous advancement flap for vulvar reconstruction by Endoscopic Near-Infrared and Indocyanine Green. Methodology The patient was a 67-year-old woman with FIGO IB ≤ 4 cm squamous cell vulvar ca…
Chromophore-Protein Interplay During the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy
2018
Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply two-color step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach …
Molecular similarities and differences from human pulmonary fibrosis and corresponding mouse model: MALDI imaging mass spectrometry in comparative me…
2017
Animal models can reproduce some model-specific aspects of human diseases, but some animal models translate poorly or fail to translate to the corresponding human disease. Here, we develop a strategy to systematically compare human and mouse tissues, and conduct a proof-of-concept experiment to identify molecular similarities and differences using patients with idiopathic pulmonary fibrosis and a bleomycin-induced fibrosis mouse model. Our novel approach employs high-throughput tissue microarrays (TMAs) of humans and mice, high-resolution matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance-mass spectrometry imaging (MALDI-FT-ICR-MSI) to spatially resolve ma…
Potential Second-Harmonic Ghost Bands in Fourier Transform Infrared (FT-IR) Difference Spectroscopy of Proteins
2018
Fourier transform infrared (FT-IR) difference absorption spectroscopy is a common method for studying the structural and dynamical aspects behind protein function. In particular, the 2800–1800 cm−1 spectral range has been used to obtain information about internal (deuterated) water molecules, as well as site-specific details about cysteine residues and chemically modified and artificial amino acids. Here, we report on the presence of ghost bands in cryogenic light-induced FT-IR difference spectra of the protein bacteriorhodopsin. The presence of these ghost bands can be particularly problematic in the 2800–1900 cm−1 region, showing intensities similar to O–D vibrations from water molecules…
High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy
2017
The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sh…
pH-sensitive vibrational probe reveals a cytoplasmic protonated cluster in bacteriorhodopsin
2017
Infrared spectroscopy has been used in the past to probe the dynamics of internal proton transfer reactions taking place during the functional mechanism of proteins but has remained mostly silent to protonation changes in the aqueous medium. Here, by selectively monitoring vibrational changes of buffer molecules with a temporal resolution of 6 µs, we have traced proton release and uptake events in the light-driven proton-pump bacteriorhodopsin and correlate these to other molecular processes within the protein. We demonstrate that two distinct chemical entities contribute to the temporal evolution and spectral shape of the continuum band, an unusually broad band extending from 2,300 to well…