Search results for "Inorganic chemistry"

showing 10 items of 7339 documents

Characterization of the Copper Transporters from Lotus spp. and Their Involvement under Flooding Conditions

2019

Forage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions. Previous results indicated that incorporation of Lotus spp. into natural grassland increases forage nutritional quality, including higher copper levels. However, the biological processes and molecular mechanisms involved in copper uptake by Lotus spp. remain poorly understood. Here, we identify four genes that encode p…

0106 biological sciences0301 basic medicineBiologíalegumesLotusCOPPERFLOODING01 natural scienceslcsh:ChemistryCopper transportersProtein-fragment complementation assayCation Transport Proteinslcsh:QH301-705.5SpectroscopyPlant Proteinsbiologyfood and beveragesGeneral MedicinePhenotypeComputer Science ApplicationsLEGUMESSaccharomyces cerevisiaechemistry.chemical_elementCatalysisArticleInorganic Chemistry03 medical and health sciencesfloodingStress PhysiologicalFORAGEBotanymedicineCiencias AgrariasPhysical and Theoretical ChemistryMolecular BiologyGeneOrganic Chemistryfungiforagebiology.organism_classificationmedicine.disease//purl.org/becyt/ford/4.5 [https]CopperTRANSPORTERScopper transportersYeastFloods030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999CIENCIAS AGRÍCOLASLotusOtras Ciencias AgrícolasCopper deficiency//purl.org/becyt/ford/4 [https]Copper010606 plant biology & botanyInternational Journal of Molecular Sciences
researchProduct

Phosphinotripeptidic Inhibitors of Leucylaminopeptidases

2021

Phosphinate pseudopeptide are analogs of peptides containing phosphinate moiety in a place of the amide bond. Due to this, the organophosphorus fragment resembles the tetrahedral transition state of the amide bond hydrolysis. Additionally, it is also capable of coordinating metal ions, for example, zinc or magnesium ions. These two properties of phosphinate pseudopeptides make them an ideal candidate for metal-related protease inhibitors. This research investigates the influence of additional residue in the P2 position on the inhibitory properties of phosphinopeptides. The synthetic strategy is proposed, based on retrosynthetic analysis. The N-C-P bond formation in the desired compounds is …

0106 biological sciences0301 basic medicineModels MolecularMolecular modelQH301-705.5StereochemistryPhosphinesProtein ConformationSwineLAP inhibitorsligand-enzyme interactionPhosphinate01 natural sciencesAminopeptidaseCatalysisArticleInorganic Chemistry03 medical and health sciencesResidue (chemistry)phosphinate pseudopeptideLeucyl AminopeptidaseMoietyPeptide bondAnimalsBiology (General)Physical and Theoretical ChemistryEnzyme InhibitorsQD1-999Molecular BiologyMagnesium ionmolecular modeling; LAP inhibitors; barley aminopeptidase inhibitor; phosphinate pseudopeptide; ligand-enzyme interaction; organophosphorus compoundSpectroscopyChemistrymolecular modelingOrganic ChemistryGeneral Medicineorganophosphorus compoundPeptide FragmentsComputer Science ApplicationsChemistry030104 developmental biologybarley aminopeptidase inhibitorHordeum vulgare010606 plant biology & botanyInternational Journal of Molecular Sciences; Volume 22; Issue 10; Pages: 5090
researchProduct

The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae

2021

Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1–C6, C2–C3, C4–C5) differing from that of insect counterparts (C1–C3, C2–C5, C4–C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destruc…

0106 biological sciences0301 basic medicineModels MolecularProteomicsProteomeOdorant bindingProtein ConformationInsectLigandsReceptors Odorant01 natural scienceschemistry.chemical_compoundTetranychus urticaeBiology (General)SpectroscopyPhylogenymedia_commonmass spectrometryGeneticsbiologyligand-bindingMolecular Structurespider mitesGeneral MedicineTetranychus urticaeComputer Science ApplicationsChemistryConiferyl aldehydedisulfide bridgesTetranychidaeProtein Bindingspider mites.QH301-705.5media_common.quotation_subjectodorant-binding proteinsCatalysisArticleInorganic Chemistry03 medical and health sciencesSpider mite<i>Tetranychus urticae</i>AnimalsAmino Acid SequencePhysical and Theoretical ChemistryQD1-999Molecular BiologySpiderOrganic Chemistrybiology.organism_classification010602 entomology030104 developmental biologychemistryVarroa destructorOdorantsChelicerataInternational Journal of Molecular Sciences
researchProduct

An Arabidopsis Mutant Over-Expressing Subtilase SBT4.13 Uncovers the Role of Oxidative Stress in the Inhibition of Growth by Intracellular Acidificat…

2020

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not orga…

0106 biological sciences0301 basic medicineMutantmedicine.disease_cause01 natural sciencesCatalysisInorganic Chemistrylcsh:ChemistryH<sup>+</sup>-ATPase03 medical and health sciencesorganic acidsmedicinePhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5Spectroscopychemistry.chemical_classificationReactive oxygen speciesNADPH oxidasebiologyNADPH oxidaseEndoplasmic reticulumOrganic ChemistryWild typeROSGeneral MedicineComputer Science ApplicationsCell biology030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999biology.proteinactivation-taggingIntracellularOxidative stress010606 plant biology & botanyOrganic acidInternational Journal of Molecular Sciences
researchProduct

Symptom severity, infection progression and plant responses in solanum plants caused by three pospiviroids vary with the inoculation procedure

2021

This article belongs to the Section Molecular Plant Sciences.

0106 biological sciences0301 basic medicineViroidvirusesPospiviroidaeCEVd01 natural sciencesRibosome18S ribosomal RNAAgro-infiltrationSolanum lycopersicumBiology (General)Spectroscopyfood and beveragesGeneral MedicinePSTVdTranscriptRibosomeViroidsComputer Science Applications02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sostenibleChemistryRNA ViralPlasmidsQH301-705.5PospiviroidaeBiologyEggplantStressArticleCatalysisTomatoMicrobiologyInorganic Chemistry03 medical and health sciencesBIOQUIMICA Y BIOLOGIA MOLECULARPhysical and Theoretical ChemistryQD1-999Molecular BiologyPotato spindle tuber viroidPlant DiseasesInoculationOrganic ChemistryfungiRibosomal RNAbiology.organism_classification030104 developmental biologyTCDVdSolanumRibosomes010606 plant biology & botany
researchProduct

Genome-Wide Profiling and Phylogenetic Analysis of the SWEET Sugar Transporter Gene Family in Walnut and Their Lack of Responsiveness to Xanthomonas …

2020

Following photosynthesis, sucrose is translocated to sink organs, where it provides the primary source of carbon and energy to sustain plant growth and development. Sugar transporters from the SWEET (sugar will eventually be exported transporter) family are rate-limiting factors that mediate sucrose transport across concentration gradients, sustain yields, and participate in reproductive development, plant senescence, stress responses, as well as support plant&ndash

0106 biological sciences0301 basic medicinephylogeny01 natural scienceslcsh:Chemistrywalnut blightTAL effectorType III Secretion Systems2.1 Biological and endogenous factorsAetiologylcsh:QH301-705.5SpectroscopyPlant Proteins<i>Xanthomonas</i>GeneticsGenomebiologyfood and beveragesSWEET sugar transportersGeneral MedicineSucrose transportComputer Science ApplicationsInfectious DiseasesMultigene Familygene familyJuglansXanthomonasPlant DevelopmentJuglansCatalysisInorganic Chemistry03 medical and health sciencesTAL effectorXanthomonasGeneticsGene familySugar transporterPhysical and Theoretical ChemistryMolecular BiologyGenePlant DiseasesChemical PhysicsOrganic ChemistryfungiMembrane Transport ProteinsBiological TransportXanthomonas arboricolaPlantbiology.organism_classification030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Gene Expression Regulationgene expressionOther Biological SciencesOther Chemical Sciences010606 plant biology & botanyInternational Journal of Molecular Sciences
researchProduct

Role of lignin and sodium carbonate on the swelling behavior of black liquor droplets during combustion

2018

AbstractA partial removal of lignin from black liquor (BL) by carbonation and lignin precipitation was studied. In lignin-lean BL droplets during combustion in a laboratory furnace at 800°C in stagnant air, the maximum swelling was decreased. This observation was interpreted as showing that the lignin content decrement is due mainly to removal of higher molar mass (HMM) lignin and that the Na2CO3content of the BL is increased. Stepwise precipitation experiments with industrial softwood and hardwood kraft BLs by carbonation (resulting in pH decrement from 13 to 9) indicated that a fraction of HMM lignin (MM &gt;10 kDa) with a higher amount of carbohydrates precipitated more prominently and e…

0106 biological sciencesInorganic chemistrymacromolecular substancesCombustion01 natural sciencescomplex mixturesBiomaterialschemistry.chemical_compound010608 biotechnologymedicineLigninchemical recoveryhigh definition video camerasodium carbonatekraft lignin040101 forestryMolar massChemistryfungimoolimassatechnology industry and agriculturefood and beveragesligniinimustalipeä04 agricultural and veterinary sciencesChemical recoverymaximum swelling of dropletsdroplet swellingKraft process0401 agriculture forestry and fisheriesSwellingmedicine.symptomSodium carbonateBlack liquor
researchProduct

Characterization of Purified Green Bell Pepper Hydroperoxide Lyase Expressed by Yarrowia Lipolytica: Radicals Detection during Catalysis

2007

International audience; The optimization of the expression of recombinant 6-His-tagged HPO lyase in Yarrowia lipolytica is described: 1800U/L of culture was detected at 24h of culture on a medium containing olive oil as the sole carbon source. The enzyme was purified by IMAC and showed an optimal pH at 5.5, an optimal temperature at 20^\circC and a Km value of 9μM with 13-HPOD substrate. The participation of radicals during the catalysis of purified bell pepper fruit hydroperoxide lyase has been observed by electron paramagnetic resonance spectroscopy and the yet unidentified radical species might be an alkyl or alkoxyl radical linked to the enzyme.

0106 biological scienceschemistry.chemical_classification0303 health sciencesbiologyRadicalSubstrate (chemistry)BioengineeringYarrowia[CHIM.INOR]Chemical Sciences/Inorganic chemistrybiology.organism_classificationLyase01 natural sciencesApplied Microbiology and BiotechnologyBiochemistryCatalysis03 medical and health sciencesEnzymechemistry010608 biotechnologyPepperOrganic chemistryAlkyl030304 developmental biologyBiotechnology
researchProduct

Electrochemical polymerization of ambipolar carbonyl-functionalized indenofluorene with memristive properties

2019

Abstract Carbonyl-functionalized indenofluorene was electropolymerized with a high faradaic efficiency of 85% and the solid state properties of the resulting polymeric thin films were investigated. They displayed modular optical properties depending on their oxidation state. The approach used for inorganic semiconductors was applied to polyindeonofluorene derivative. Mott-Schottky analysis evidenced a switching from p-type to n-type electrical conduction, suggesting an ambipolar behaviour of the polymer. As an application, flexible organic memristors were fabricated and resistive switching properties were observed.

02 engineering and technology010402 general chemistry01 natural sciencesSettore ING-INF/01 - ElettronicaOrganic memristorsInorganic Chemistrychemistry.chemical_compoundOxidation stateElectrochemical polymerizationElectrical and Electronic EngineeringPhysical and Theoretical ChemistryThin filmSpectroscopychemistry.chemical_classificationAmbipolar diffusionbusiness.industryOrganic ChemistryPolymerSettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnologyIndenofluorene derivatives Electrochemical polymerization Organic semiconductors Organic memristorsAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsOrganic semiconductorSemiconductorChemical engineeringchemistryOrganic semiconductors0210 nano-technologybusinessFaraday efficiencyDerivative (chemistry)Indenofluorene derivatives
researchProduct

Electron Spin Resonance study of charge trapping in α-ZnMoO4 single crystal scintillator

2015

The origin and properties of electron and hole traps simultaneously appearing in a-ZnMoO4 scintillator after X-ray irradiation at low temperatures (T < 35 K) were studied by Electron Spin Resonance (ESR). ESR spectrum of the electron type trap shows pronounced superhyperfine structure due to the interaction of electron spin with nuclear magnetic moments of 95,97Mo and 67Zn lattice nuclei. Considering the nearly tetragonal symmetry of the center this allows us to identify the electron trap as an electron self-trapped at the (Mo(1)O4) 2 complex. Nearly 60% reduction of the spin–orbit coupling at the Mo(1) ion is caused by the overlap of the Mo and ligand oxygen orbitals indicating an essentia…

02 engineering and technologyElectronCharge trapsElectron Spin Resonance010402 general chemistry01 natural sciencesIonlaw.inventionInorganic ChemistryDelocalized electronTetragonal crystal systemAtomic orbitallawElectrical and Electronic EngineeringPhysical and Theoretical ChemistryElectron paramagnetic resonanceSpectroscopyZinc molybdateChemistryOrganic ChemistryScintillator021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsCrystal field theoryAtomic physics0210 nano-technologySingle crystalOptical Materials
researchProduct