Search results for "Instrumentation"
showing 10 items of 4914 documents
H− extraction systems for CERN’s Linac4 H− ion source
2018
Abstract Linac4 is a 160 MeV linear H − accelerator at CERN. It is an essential part of the beam luminosity upgrade of the Large Hadron Collider (LHC) and will be the primary injector into the chain of circular accelerators. It aims at increasing the beam brightness by a factor of 2, when compared to the currently used 50 MeV linear proton accelerator, Linac2. Linac4’s ion source is a cesiated RF-plasma H − ion source. Several beam extraction systems were designed for H − beams of 45 keV energy, 50 mA intensity and an electron to H − ratio smaller than 5. The goal was to extract a beam with an rms-emittance of 0 . 25 π mm mrad. One of the main challenges in designing an H − extraction…
Radiation emission at channeling of electrons in a strained layer undulator crystal
2013
Abstract Experiments have been performed at the Mainz Microtron MAMI to explore the radiation emission spectra from a crystalline undulator at electron beam energies of 270 and 855 MeV. The epitaxially grown graded composition strained layer Si 1 - x Ge x undulator had 4-period with a period length λ u = 9.9 μ m . Spectra taken at the beam energy of 270 MeV at channeling in the undulating (110) planes exhibit a broad excess yield around the theoretically expected photon energies of 0.069 MeV, as compared with a flat silicon reference crystal. Model calculations on the basis of synchrotron-like radiation emission from finite single arc elements, taking into account also coherence effects, su…
ABALONETM Photosensors for the IceCube experiment
2020
Abstract The ABALONE TM Photosensor Technology (U.S. Pat. 9,064,678) is a modern technology specifically invented for cost-effective mass production, robustness, and high performance. We present the performance of advanced fused-silica ABALONE Photosensors, developed specifically for the potential extension of the IceCube neutrino experiment, and stress-tested for 120 days. The resulting performance makes a significant difference: intrinsic gain of ≈ 6 × 108, total afterpulsing rate of only 5 × 10−3 ions per photoelectron , sub-nanosecond timing resolution, single-photon sensitivity, and unique radio-purity and UV sensitivity, thanks to the fused silica components—at no additional cost to t…
Radiation hardness studies of CdTe and for the SIXS particle detector on-board the BepiColombo spacecraft
2009
Abstract We report of the radiation hardness measurements that were performed in the developing work of a particle detector on-board ESA's forthcoming BepiColombo spacecraft. Two different high- Z semiconductor compounds, cadmium telluride (CdTe) and mercuric iodide (HgI 2 ), were irradiated with 22 MeV protons in four steps to attain the estimated total dose of 10 12 p / cm 2 for the mission time. The performance of the detectors was studied before and after every irradiation with radioactive 55 Fe source Mn K α 5.9 keV emission line. We studied the impact of the proton beam exposure on detector leakage current, energy resolution and charge collection efficiency (CCE). Also the reconstruct…
Mass calibration of the energy axis in ToF- E elastic recoil detection analysis
2016
We report on procedures that we have developed to mass-calibrate the energy axis of ToF-E histograms in elastic recoil detection analysis. The obtained calibration parameters allow one to transform the ToF-E histogram into a calibrated ToF-M histogram.
The effect of plasma electrode collar structure on the performance of the JYFL 14GHz electron cyclotron resonance ion source
2013
Abstract The influence of a so-called collar structure on the performance of the JYFL 14 GHz electron cyclotron resonance ion source (ECRIS) has been studied experimentally at the Department of Physics, University of Jyvaskyla (JYFL). The collar is a cylindrical structure extruding inwards from the plasma electrode. The collar length was varied between 5 and 60 mm. For some ion species a moderate performance improvement was achieved in terms of extracted beam current and transverse emittance up to 30 mm collar length. Longer collars resulted in a substantial performance decrease. Different collar materials, i.e. nonmagnetic stainless steel, aluminum and Al 2 O 3 , and a wide range of ion sp…
System for control of polarization state of light and generation of light with continuously rotating linear polarization
2019
We present a technique for generating light in an arbitrary polarization state. The technique is based on interference of two orthogonally polarized light beams, whose amplitudes and phases are controlled with a Mach-Zehnder inteferometer with acousto-optic modulators (AOMs) placed in each arm. We demonstrate that via control over amplitudes, phases, and frequencies of acoustic waves driving the AOMs, any polarization state can be synthesized. In particular, we demonstrate generation of linearly polarized light, whose polarization plane continuously rotates at a rate from 1 kHz to 1 MHz. Such light finds applications in science (e.g., investigations of Bloch-Siegert effect) and technology (…
Measurements of the energy distribution of electrons lost from the minimum B-field -- the effect of instabilities and two-frequency heating
2020
Further progress in the development of ECR ion sources (ECRIS) requires deeper understanding of the underlying physics. One of the topics that remains obscure, though being crucial for the performance of the ECRIS, is the electron energy distribution (EED). A well-developed technique of measuring the EED of electrons escaping axially from the magnetically confined plasma of an ECRIS was used for the study of EED in unstable mode of plasma confinement, i.e. in the presence of kinetic instabilities. The experimental data were recorded for pulsed and CW discharges with a room-temperature 14 GHz ECRIS at the JYFL accelerator laboratory. The measurements were focused on observing differences bet…
Charge breeding at GANIL: Improvements, results, and comparison with the other facilities
2019
International audience; The 1+/n+ method, based on an ECRIS charge breeder (CB) originally developed at the LPSC laboratory, is now implemented at GANIL for the production of Radioactive Ion Beams (RIBs). Prior to its installation in the middle of the low energy beam line of the SPIRAL1 facility, the 1+/n+ system CB has been modified based on the experiments performed on the CARIBU Facility at Argone National Laboratory. Later, it has been tested at the 1+/n+ LPSC test bench to validate its operation performances. Charge breeding efficiencies as well as charge breeding times have been measured for noble gases and alkali elements. The commissioning phase started at GANIL in the second half-y…
Simulations on time-of-flight ERDA spectrometer performance
2016
The performance of a time-of-flight spectrometer consisting of two timing detectors and an ionization chamber energy detector has been studied using Monte Carlo simulations for the recoil creation and ion transport in the sample and detectors. The ionization chamber pulses have been calculated using Shockley-Ramo theorem and the pulse processing of a digitizing data acquisition setup has been modeled. Complete time-of-flight–energy histograms were simulated under realistic experimental conditions. The simulations were used to study instrumentation related effects in coincidence timing and position sensitivity, such as background in time-of-flight–energy histograms. Corresponding measurement…