Search results for "Integer"
showing 10 items of 250 documents
Non-vanishing elements of finite groups
2010
AbstractLet G be a finite group, and let Irr(G) denote the set of irreducible complex characters of G. An element x of G is non-vanishing if, for every χ in Irr(G), we have χ(x)≠0. We prove that, if x is a non-vanishing element of G and the order of x is coprime to 6, then x lies in the Fitting subgroup of G.
Conjugacy classes, characters and products of elements
2019
Recently, Baumslag and Wiegold proved that a finite group $G$ is nilpotent if and only if $o(xy)=o(x)o(y)$ for every $x,y\in G$ of coprime order. Motivated by this result, we study the groups with the property that $(xy)^G=x^Gy^G$ and those with the property that $\chi(xy)=\chi(x)\chi(y)$ for every complex irreducible character $\chi$ of $G$ and every nontrivial $x, y \in G$ of pairwise coprime order. We also consider several ways of weakening the hypothesis on $x$ and $y$. While the result of Baumslag and Wiegold is completely elementary, some of our arguments here depend on (parts of) the classification of finite simple groups.
Finite groups with real-valued irreducible characters of prime degree
2008
Abstract In this paper we describe the structure of finite groups whose real-valued nonlinear irreducible characters have all prime degree. The more general situation in which the real-valued irreducible characters of a finite group have all squarefree degree is also considered.
Optimization Under Fuzzy Max-t-Norm Relation Constraints
2019
Fuzzy relation equations and inequalities play an important role in many tools of fuzzy modelling and have been extensively studied. In many practical applications they are used as constraints in optimization. Algorithms for specific objective functions have been proposed by many authors. In this paper we introduce a method to convert a system of fuzzy relation constraints with max-t-norm composition to a linear constraint system by adding integer variables. A numerical example is provided to illustrate the proposed method.
Polyomino coloring and complex numbers
2008
AbstractUsually polyominoes are represented as subsets of the lattice Z2. In this paper we study a representation of polyominoes by Gaussian integers. Polyomino {(x1,y1),(x2,y2),…,(xs,ys)}⊂Z2 is represented by the set {(x1+iy1),(x2+iy2),…,(xs+iys)}⊂Z[i]. Then we consider functions of type f:P→G from the set P of all polyominoes to an abelian group G, given by f(x,y)≡(x+iy)m(modv), where v is prime in Z[i],1≤m<N(v) (N(v) is the norm of v). Using the arithmetic of the ring Z[i] we find necessary and sufficient conditions for such a function to be a coloring map.
On the exhaustive generation of k-convex polyominoes
2017
The degree of convexity of a convex polyomino P is the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. In this paper we present a simple algorithm for computing the degree of convexity of a convex polyomino and we show how it can be used to design an algorithm that generates, given an integer k, all k-convex polyominoes of area n in constant amortized time, using space O(n). Furthermore, by applying few changes, we are able to generate all convex polyominoes whose degree of convexity is exactly k.
Classifying G-graded algebras of exponent two
2019
Let F be a field of characteristic zero and let $$\mathcal{V}$$ be a variety of associative F-algebras graded by a finite abelian group G. If $$\mathcal{V}$$ satisfies an ordinary non-trivial identity, then the sequence $$c_n^G(\mathcal{V})$$ of G-codimensions is exponentially bounded. In [2, 3, 8], the authors captured such exponential growth by proving that the limit $$^G(\mathcal{V}) = {\rm{lim}}_{n \to \infty} \sqrt[n]{{c_n^G(\mathcal{V})}}$$ exists and it is an integer, called the G-exponent of $$\mathcal{V}$$ . The purpose of this paper is to characterize the varieties of G-graded algebras of exponent greater than 2. As a consequence, we find a characterization for the varieties with …
Two Reflected Gray Code-Based Orders on Some Restricted Growth Sequences
2014
We consider two order relations: that induced by the m-ary reflected Gray code and a suffix partitioned variation of it. We show that both of them when applied to some sets of restricted growth sequences still yield Gray codes. These sets of sequences are: subexcedant and ascent sequences, restricted growth functions and staircase words. In particular, we give the first suffix partitioned Gray codes for restricted growth f unctions and ascent sequences; these latter sequences code various combinatorial classes as interval orders, upper triangular matrices without zero rows and zero columns whose non-negative integer entries sum up to n, and certain pattern-avoiding permutations. For each Gr…
Bi-homogeneity and integrability of rational potentials
2020
Abstract In this paper we consider natural Hamiltonian systems with two degrees of freedom for which Hamiltonian function has the form H = 1 2 ( p 1 2 + p 2 2 ) + V ( q 1 , q 2 ) and potential V ( q 1 , q 2 ) is a rational function. Necessary conditions for the integrability of such systems are deduced from integrability of dominate term of the potential which usually is appropriately chosen homogeneous term of V. We show that introducing weights compatible with the canonical structure one can find new dominant terms which can give new necessary conditions for integrability. To deduce them we investigate integrability of a family of bi-homogeneous potentials which depend on two integer para…
Causal representation of multi-loop Feynman integrands within the loop-tree duality
2021
The numerical evaluation of multi-loop scattering amplitudes in the Feynman representation usually requires to deal with both physical (causal) and unphysical (non-causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily characterise and distinguish these two types of singularities, and then simplify analytically the underling expressions. In this paper, we work explicitly on the dual representation of multi-loop Feynman integrals generated from three parent topologies, which we refer to as Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topologies. In particular, we aim at expressing these dual contributions, independently of the number of loops an…