Search results for "Integrable systems"

showing 10 items of 256 documents

On deformation of Poisson manifolds of hydrodynamic type

2001

We study a class of deformations of infinite-dimensional Poisson manifolds of hydrodynamic type which are of interest in the theory of Frobenius manifolds. We prove two results. First, we show that the second cohomology group of these manifolds, in the Poisson-Lichnerowicz cohomology, is ``essentially'' trivial. Then, we prove a conjecture of B. Dubrovin about the triviality of homogeneous formal deformations of the above manifolds.

Class (set theory)Pure mathematicsConjectureDeformation (mechanics)Nonlinear Sciences - Exactly Solvable and Integrable SystemsGroup (mathematics)FOS: Physical sciencesStatistical and Nonlinear PhysicsType (model theory)Poisson distributionMAT/07 - FISICA MATEMATICATrivialityMathematics::Geometric TopologyCohomologysymbols.namesakeDeformation of Poisson manifoldsPoisson-Lichnerowicz cohomologysymbolsPoisson manifolds Poisson-Lichnerowicz cohomology Infinite-dimensional manifolds Frobenius manifoldsMathematics::Differential GeometryExactly Solvable and Integrable Systems (nlin.SI)Mathematics::Symplectic GeometryMathematical PhysicsMathematics
researchProduct

Integrable systems, Frobenius manifolds and cohomological field theories

2022

In this dissertation, we study the underlying geometry of integrable systems, in particular tausymmetric bi-Hamiltonian hierarchies of evolutionary PDEs and differential-difference equations.First, we explore the close connection between the realms of integrable systems and algebraic geometry by giving a new proof of the Witten conjecture, which constructs the string taufunction of the Korteweg-de Vries hierarchy via intersection theory of the moduli spaces of stable curves with marked points. This novel proof is based on the geometry of double ramification cycles, tautological classes whose behavior under pullbacks of the forgetful and gluing maps facilitate the computation of intersection…

Cohomological field theorySystème intégrableHiérarchie de Dubrovin et Zhang[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Espace de modules de courbes stablesDouble ramification cyclesThéorie cohomologique des champsNonlinear Sciences::Exactly Solvable and Integrable SystemsIntegrable systemsModuli space of stable curvesDubrovin-Zhang hierarchyFrobenius manifoldsCycles de ramification doubleMathematics::Symplectic GeometryVariété de Frobenius
researchProduct

Spectral approach to the scattering map for the semi-classical defocusing Davey–Stewartson II equation

2019

International audience; The inverse scattering approach for the defocusing Davey–Stewartson II equation is given by a system of D-bar equations. We present a numerical approach to semi-classical D-bar problems for real analytic rapidly decreasing potentials. We treat the D-bar problem as a complex linear second order integral equation which is solved with discrete Fourier transforms complemented by a regularization of the singular parts by explicit analytic computation. The resulting algebraic equation is solved either by fixed point iterations or GMRES. Several examples for small values of the semi-classical parameter in the system are discussed.

ComputationFOS: Physical sciences010103 numerical & computational mathematicsFixed point01 natural sciencesRegularization (mathematics)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Davey-Stewartson equationsFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]Mathematics[PHYS]Physics [physics]Nonlinear Sciences - Exactly Solvable and Integrable SystemsScattering010102 general mathematicsStatistical and Nonlinear PhysicsD-bar problemsNumerical Analysis (math.NA)Condensed Matter PhysicsFourier spectral methodGeneralized minimal residual methodIntegral equationAlgebraic equationInverse scattering problemExactly Solvable and Integrable Systems (nlin.SI)Limit
researchProduct

Rational solutions to the KPI equation from particular polynomials

2022

Abstract We construct solutions to the Kadomtsev–Petviashvili equation (KPI) from particular polynomials. We obtain rational solutions written as a second spatial derivative of a logarithm of a determinant of order n . We obtain with this method an infinite hierarchy of rational solutions to the KPI equation. We give explicitly the expressions of these solutions for the first five orders.

Computational MathematicsNonlinear Sciences::Exactly Solvable and Integrable SystemsLogarithmHierarchy (mathematics)Applied MathematicsModeling and SimulationGeneral Physics and AstronomyOrder (group theory)Applied mathematicsHigh Energy Physics::ExperimentDerivativeA determinantMathematicsWave Motion
researchProduct

"Table 2" of "Study of $e^+e^- \rightarrow p\bar{p}$ in the vicinity of $\psi(3770)$"

2014

The two solutions of the dressed cross section and the corresponding phase angles, PHI.

Condensed Matter::Quantum GasesNonlinear Sciences::Exactly Solvable and Integrable SystemsE+ E- --> P PBARE+ E- Scattering3.65-3.9Integrated Cross SectionExclusivePsiPhysics::Atomic PhysicsCross SectionSIG
researchProduct

Slow-light soliton dynamics with relaxation

2007

We solved the problem of soliton dynamics in the presence of relaxation. We demonstrate that the spontaneous emission of atoms is strongly suppressed due to nonlinearity. The spatial shape of the soliton is well preserved.

Condensed Matter::Quantum GasesPhysicsNonlinear opticsSlow lightMolecular physicsNonlinear systemNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum mechanicsAtom opticsRelaxation (physics)Spontaneous emissionStimulated emissionSolitonNonlinear Sciences::Pattern Formation and Solitons2007 Quantum Electronics and Laser Science Conference
researchProduct

Self-dressing in classical and quantum electrodynamics

2003

A short review is presented of the theory of dressed states in nonrelativistic QED, encompassing fully and partially dressed states in atomic physics. This leads to the concept of the reconstruction of the cloud of virtual photons and of self-dressing. Finally some recent results on the classical counterpart of self-dressing are discussed and a comparison is made with the QED case. Attention is drawn to open problems and future lines of research are briefly outlined.

Condensed Matter::Quantum GasesPhysicsbusiness.industryGeneral Physics and AstronomyVirtual particleCloud computingNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum mechanicsQuantum electrodynamicsquantum electrodynamicsPhysics::Atomic Physicsbusinessclassical self-dressingQuantum self-dressing
researchProduct

Statistical Mechanics of the Integrable Models

1987

There is an infinity of classically integrable models. The only ones we can consider here, and these only briefly, are: the sine-Gordon (s-G) model $${\phi _{{\rm{xx}}}}{}^ - {\phi _{{\rm{tt}}}} = {{\rm{m}}^2}\sin \phi ,$$ (1.1) the sinh-Gordon (sinh-G) model $${\phi _{{\rm{xx}}}}{}^ - {\phi _{{\rm{tt}}}} = {{\rm{m}}^2}\sinh \phi ,$$ (1.2) and the repulsive and attractive non-linear Schrodinger (NLS) models $${}^ - {\rm{i}}{\phi _{\rm{t}}} = {\phi _{{\rm{xx}}}}{}^ - 2{\rm{c}}\phi {\left| \phi \right|^2}.$$ (1.3) The “attractive” NLS has real coupling constant c 0; φ is complex. In (1.1) and (1.2) m is a mass (ħ = c = 1) and φ is real. These 4 integrable models are in one space and one time …

Coupling constantPhysicsNonlinear Sciences::Exactly Solvable and Integrable SystemsIntegrable systemmedia_common.quotation_subjectStatistical mechanicsQuantum statistical mechanicsInfinitySpace (mathematics)Classical limitmedia_commonMathematical physics
researchProduct

Quantum and Classical Statistical Mechanics of the Non-Linear Schrödinger, Sinh-Gordon and Sine-Gordon Equations

1985

We are going to describe our work on the quantum and classical statistical mechanics of some exactly integrable non-linear one dimensional systems. The simplest is the non-linear Schrodinger equation (NLS) $$i{\psi _t} = - {\psi _{XX}} + 2c{\psi ^ + }\psi \psi $$ (1) where c, the coupling constant, is positive. The others are the sine- and sinh-Gordon equations (sG and shG) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sin \phi $$ (1.2) $${\phi _{xx}} - {\phi _{tt}} = {m^2}\sinh \phi $$ (1.3)

Coupling constantPhysicsPartition function (statistical mechanics)Schrödinger equationsymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemsQuantum mechanicssymbolsRelativistic wave equationsMethod of quantum characteristicsHigh Energy Physics::ExperimentSupersymmetric quantum mechanicsQuantum statistical mechanicsFractional quantum mechanicsMathematical physics
researchProduct

gg→HH : Combined uncertainties

2021

In this paper we discuss the combination of the usual renormalization and factorization scale uncertainties of Higgs-pair production via gluon fusion with the novel uncertainties originating from the scheme and scale choice of the virtual top mass. Moreover, we address the uncertainties related to the top-mass definition for different values of the trilinear Higgs coupling and their combination with the other uncertainties.

CouplingPhysicsParticle physicsScale (ratio)010308 nuclear & particles physicsPhysicsHigh Energy Physics::LatticeHigh Energy Physics::Phenomenology01 natural sciencesGluonRenormalizationNonlinear Sciences::Exactly Solvable and Integrable SystemsFactorization0103 physical sciencesHiggs bosonddc:530High Energy Physics::Experiment010306 general physicsPhysical Review D
researchProduct