Search results for "Interatomic potential"

showing 10 items of 19 documents

Modelling of the cation motions in complex system: case of Na-mordenites

2002

Abstract Semi-empirical inter-atomic potentials and Monte Carlo algorithms are proposed to predict the evolution of the interaction energy between sodium ions and a mordenite type aluminosilicate network as a function of Si/Al ratio. This result is favourably compared with the activation energy barriers for Na + `jumps' responsible for the polarization change, measured by thermally stimulated current (TSC) spectroscopy, for Na-mordenites characterized by Si/Al ratios ranged from 5.5 to 12. Finally, we propose a possible mechanism for the cation motions, which involves activation barriers within the same order of magnitude than those measured by TSC.

ChemistryThermodynamicsInteratomic potentialActivation energyInteraction energyCondensed Matter PhysicsMordeniteElectronic Optical and Magnetic MaterialsIonComputational chemistryAluminosilicateMaterials ChemistryCeramics and CompositesSpectroscopyOrder of magnitudeJournal of Non-Crystalline Solids
researchProduct

Structure of Liquids

2014

An Introduction to the description of the static structure of simple liquids is given. The principle quantity, which describes this structure is the structure factor, which can be measured with neutron and X-ray diffraction. The structure factor is the Fourier transform of the radial pair distribution function, which describes the statistics of the atoms around a given one. Several theories are introduced for calculating this quantities. It is shown that the structure of liquid metals is dominated by their hardcore repulsion. In the low-wavenumber limit the structure factor is related to the compressibility of the liquid. In this limit deviations from the hard-core model become importent, w…

DiffractionPhysicssymbols.namesakeFourier transformSimple (abstract algebra)symbolsCompressibilityPair distribution functionInteratomic potentialStatistical physicsStructure factorAtomic packing factor
researchProduct

Field fluctuations near a conducting plate and Casimir-Polder forces in the presence of boundary conditions

2006

We consider vacuum fluctuations of the quantum electromagnetic field in the presence of an infinite and perfectly conducting plate. We evaluate how the change of vacuum fluctuations due to the plate modifies the Casimir-Polder potential between two atoms placed near the plate. We use two different methods to evaluate the Casimir-Polder potential in the presence of the plate. They also give new insights on the role of boundary conditions in the Casimir-Polder interatomic potential, as well as indications for possible generalizations to more complicated boundary conditions.

Electromagnetic fieldPhysicsQuantum PhysicsField (physics)Condensed Matter::OtherFOS: Physical sciencesInteratomic potentialMechanicsPotential energyCasimir-Polder forceAtomic and Molecular Physics and OpticsCasimir effectClassical mechanicsPhysics::Atomic and Molecular ClustersBoundary value problemPhysics::Atomic Physicscavity quantum electrodynamicQuantum Physics (quant-ph)Quantumquantum fluctuations.Quantum fluctuation
researchProduct

Modelling the carbon Snoek peak in ferrite: Coupling molecular dynamics and kinetic Monte-Carlo simulations

2008

Abstract Molecular statics, molecular dynamics and kinetic Monte-Carlo are used to model the carbon Snoek peak in ferrite. Using an interatomic EAM potential for the Fe–C system, saddle point energies for the diffusion of carbon have been evaluated under uniaxial stress by molecular statics. These energies have been reintroduced in a kinetic Monte-Carlo scheme to predict the repartition of carbon atoms in different octahedral sites. This repartition leads to an anelastic deformation calculated by molecular dynamics, which causes internal friction (the Snoek peak) for cyclic stress. This approach leads to quantitative predictions of the internal friction, which are in good agreement with exp…

General Computer ScienceMonte Carlo method[ SPI.MAT ] Engineering Sciences [physics]/MaterialsGeneral Physics and AstronomyThermodynamicsInteratomic potential02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/MaterialsKinetic energy7. Clean energy01 natural sciences010305 fluids & plasmas[SPI.MAT]Engineering Sciences [physics]/MaterialsCondensed Matter::Materials ScienceMolecular dynamicsSaddle point0103 physical sciencesGeneral Materials ScienceKinetic Monte CarloComputingMilieux_MISCELLANEOUSEmbedded atom modelCondensed matter physicsChemistryGeneral Chemistry021001 nanoscience & nanotechnologyComputational MathematicsMechanics of MaterialsFerrite (magnet)0210 nano-technology
researchProduct

On the Ground State Structure of Adsorbed Monolayers: Can One Find them by Monte Carlo Simulation?

2002

While the classical ground state structure of an atomic monolayer adsorbed at a noncorrugated perfectly flat substrate trivially is a triangular lattice, the spacing being the minimum of the interatomic potential, nontrivial structures occur on corrugated substrates. This problem is exemplified for the (100) face of a face-centered cubic crystal, varying both the density of the adsorbed monolayer and the strength of the potential due to the surface. Increasing the density beyond that of the commensurate c(2 x 2) structure, incommensurate patterns become stable with “heavy” walls (HW) oriented along the face diagonals [including the “crossing heavy walls” (CRHW) phase]. It is shown that slow…

Materials scienceComputational chemistryMetastabilityMonolayerMonte Carlo methodDynamic Monte Carlo methodInteratomic potentialHexagonal latticeCubic crystal systemGround stateMolecular physics
researchProduct

Dislocation interaction with C in α-Fe: a comparison between atomic simulations and elasticity theory

2008

International audience; The interaction of C atoms with a screw and an edge dislocation is modelled at an atomic scale using an empirical Fe-C interatomic potential based on the Embedded Atom Method (EAM) and molecular statics simulations. Results of atomic simulations are compared with predictions of elasticity theory. It is shown that a quantitative agreement can be obtained between both modelling techniques as long as anisotropic elastic calculations are performed and both the dilatation and the tetragonal distortion induced by the C interstitial are considered. Using isotropic elasticity allows to predict the main trends of the interaction and considering only the interstitial dilatatio…

Materials sciencePolymers and Plastics[ SPI.MAT ] Engineering Sciences [physics]/MaterialsFOS: Physical sciencesInteratomic potential02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials01 natural sciencesAtomic units[SPI.MAT]Engineering Sciences [physics]/MaterialsCondensed Matter::Materials ScienceTetragonal crystal systemedge dislocation0103 physical sciencesAtomanisotropic elasticityElasticity (economics)010306 general physicsAnisotropyComputingMilieux_MISCELLANEOUSCottrell atmospheresCondensed Matter - Materials ScienceCondensed matter physicsMetals and AlloysMaterials Science (cond-mat.mtrl-sci)Fe-C alloysbinding energy021001 nanoscience & nanotechnologyFinite element methodElectronic Optical and Magnetic Materialsscrew dislocationClassical mechanics[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Ceramics and CompositesDislocation0210 nano-technology
researchProduct

Prediction of structural and thermodynamic properties of zinc-blende AlN: molecular dynamics simulation

2004

Abstract Structural and elastic properties of AlN are investigated by using a molecular dynamics simulation based on the Tersoff empirical interatomic potential. Both of zinc-blende and rock-salt structures are discussed. The calculated bulk properties and elastic constants agree well with the available experimental and theoretical data. The Thermodynamic properties in zinc-blende structure are also predicted including the Debye temperature, melting temperature, heat capacity, linear thermal coefficient. This study is helpful to understand the bahviour of physical properties of AlN when the temperature varies.

Melting temperatureGeneral Physics and AstronomyThermodynamicschemistry.chemical_elementInteratomic potentialZincThermal coefficientHeat capacityCondensed Matter::Materials Sciencesymbols.namesakeMolecular dynamicschemistrysymbolsPhysical and Theoretical ChemistryDebye modelChemical Physics
researchProduct

Study of the different polymorphs of alumina and transitional phases appearing in the first oxidation stage of aluminium : simulation at the atomic s…

2014

The goal of this work is to develop a new SMTB-Q potential in order to study the early stages of the oxidation of aluminium by molecular dynamics (MD).Our potential is able to model different alumina polymorphs as well as transitions from the amorphous state to a crystalline phase. Our approach couples a covalent term with the charge. It uses Rapp_ and Goddard scheme for the electrostatic part and the model of alternating network developed by C. Noguera for the covalent part.The SMTB-Q potential was validated with a Monte Carlo approach. This study shows that the potential SMTB-Q gives satisfactory results for the Al-O bonding in different atomic configurations. The bonding results from the…

Molecular dynamicLiaison iono-covalentesAluminaInteratomic potentialOxidesAluminesIono-covalente bondTransition aluminaAlumine de transition[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryOxydesPotentiel interatomiqueDynamique moléculaireFilm minceThin filmMonte CarloPolymorphsPolymorphes
researchProduct

Ab initioquality neural-network potential for sodium

2010

An interatomic potential for high-pressure high-temperature (HPHT) crystalline and liquid phases of sodium is created using a neural-network (NN) representation of the ab initio potential energy surface. It is demonstrated that the NN potential provides an ab initio quality description of multiple properties of liquid sodium and bcc, fcc, cI16 crystal phases in the P-T region up to 120 GPa and 1200 K. The unique combination of computational efficiency of the NN potential and its ability to reproduce quantitatively experimental properties of sodium in the wide P-T range enables molecular dynamics simulations of physicochemical processes in HPHT sodium of unprecedented quality.

Physicochemical ProcessesCondensed Matter - Materials ScienceMaterials scienceStatistical Mechanics (cond-mat.stat-mech)Artificial neural networkSodiumAb initioMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesThermodynamicschemistry.chemical_elementInteratomic potentialCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCrystalQuality (physics)chemistryCondensed Matter - Statistical MechanicsPhysical Review B
researchProduct

Two-dimensional mobile breather scattering in a hexagonal crystal lattice.

2021

We describe the full two-dimensional scattering of long-lived breathers in a model hexagonal lattice of atoms. The chosen system, representing an idealized model of mica, combines a Lennard-Jones interatomic potential with an “egg-box” harmonic potential well surface. We investigate the dependence of breather properties on the ratio of the well depths associated with the interaction and on-site potentials. High values of this ratio lead to large spatial displacements in adjacent chains of atoms and thus enhance the two-dimensional character of the quasi-one-dimensional breather solutions. This effect is further investigated during breather-breather collisions by following the constrained en…

PhysicsBreatherHexagonal crystal systemScatteringInteratomic potential01 natural sciencesMolecular physics010305 fluids & plasmasExcited stateLattice (order)0103 physical sciencesHexagonal latticeMica010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsPhysical review. E
researchProduct