Search results for "Interferometer"
showing 10 items of 109 documents
Kernel-based retrieval of atmospheric profiles from IASI data
2011
This paper proposes the use of kernel ridge regression (KRR) to derive surface and atmospheric properties from hyperspectral infrared sounding spectra. We focus on the retrieval of temperature and humidity atmospheric profiles from Infrared Atmospheric Sounding Interferometer (MetOp-IASI) data, and provide confidence maps on the predictions. In addition, we propose a scheme for the identification of anomalies by supervised classification of discrepancies with the ECMWF estimates. For the retrieval, we observed that KRR clearly outperformed linear regression. Looking at the confidence maps, we observed that big discrepancies are mainly due to the presence of clouds and low emissivities in de…
Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides
2012
Compact fiber-coupled dielectric-loaded plasmonic Mach-Zehnder interferometers operating at telecom wavelengths and controlled via the thermo-optic effect are reported. Two fabricated structures with Cytop substrate and a ridge made of PMMA or a cycloaliphatic acrylate polymer (CAP) were considered showing low switching power of 2.35 mW and switching time in the range of microseconds for a CAP ridge and milliseconds switching time for a PMMA ridge. Full output modulation is demonstrated for the structure with a CAP ridge and 40% modulation with a PMMA ridge. (C) 2012 Optical Society of America Compact fiber-coupled dielectric-loaded plasmonic Mach-Zehnder interferometers operating at teleco…
Advanced Virgo Status
2015
Abstract The detection of a gravitational wave signal in September 2015 by LIGO interferometers, announced jointly by LIGO collaboration and Virgo collaboration in February 2016, opened a new era in Astrophysics and brought to the whole community a new way to look at - or “listen” to - the Universe. In this regard, the next big step was the joint observation with at least three detectors at the same time. This configuration provides a twofold benefit: it increases the signal-to-noise ratio of the events by means of triple coincidence and allows a narrower pinpointing of GW sources, and, in turn, the search for Electromagnetic counterparts to GW signals. Advanced Virgo (AdV) is the second ge…
Ultrastable Holographic Cyclic Interferometer
1990
ABSTRACT We propose to use an off-axis zone plate, as beam splitter and as beam recombiner, to set a cyclic interferometer. We show that this optical device can be tuned to generate, with high stability, cosinusoidal gratings and/or cosinusoidal zone plates. 1. INTRODUCTION Several modern optical devices incorporate holographically generated optical elements; either for substituting conventional optical elements, or for introducing novel techniques for manipulating light.In particular, in the field of interferometry there are attemps to use diffracting ele ments for testing large optics; without using large beam splitters1"^.The aim of this work is to suggest, and to experimentally verify,…
Performance of electro-optical plasmonic ring resonators at telecom wavelengths
2012
International audience; In this work we report on the characteristics of an electro-optical dielectric-loaded surface plasmon polariton waveguide ring resonator. By doping the dielectric host matrix with an electro-optical material and designing an appropriate set of planar electrodes, we measured a 16% relative change of transmission upon application of a controlled electric field. We have analyzed the temporal response of the device and conclude that electrostriction of the host matrix is playing a dominating role in the transmission response.
GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence
2017
On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M and 25.3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible regio…
Electrooptic coefficient measurements by Mach Zehnder interferometric method: Application of Abelès matrix formalism for thin film polymeric sample d…
2013
Abstract In Mach–Zehnder interferometric (MZI) method for determination of thin organic film electrooptic ( EO ) coefficients r 13 and r 33 critical effects, like multiple internal reflections and sample thickness modulation due to electrostriction and piezoelectricity are usually overlooked. Ignoring these effects may lead to inaccurate calculation of EO coefficients from experimental data by the simplified equations. To describe the influence of the above mentioned effects on the output of a MZI containing a thin film polymer sample we have used the Abeles matrix formalism.
Status of Advanced Virgo
2017
The LIGO and the Virgo collaborations have recently announced the first detections of Gravitational Waves. Due to their weak amplitude, Gravitational Waves are expected to produce a very small effect on free-falling masses, which undergo a displacement of the order of 10-18 m for a Km-scale mutual distance. This discovery showed that interferometric detectors are suitable to reveal such a feeble effect, and therefore represent a new tool for astronomy, astrophysics and cosmology in the understanding of the Universe. To better reconstruct the position of the Gravitational Wave source and increase the signal-to-noise ratio of the events by means of multiple coincidence, a network of detectors…
Miniature MOEMS hyperspectral imager with versatile analysis tools
2019
The Fabry-Perot interferometers (FPI) are essential components of many hyperspectral imagers (HSI). While the Piezo-FPI (PFPI) are still very relevant in low volume, high performance applications, the tunable MOEMS FPI (MFPI) technology enables volume-scalable manufacturing, thus having potential to be a major game changer with the advantages of low costs and miniaturization. However, before a FPI can be utilized, it must be integrated with matching optical assembly, driving electronics and imaging sensor. Most importantly, the whole HSI system must be calibrated to account for wide variety of unwanted physical and environmental effects, that significantly influence quality of hyperspectral…