Search results for "Intermetallic"

showing 10 items of 101 documents

Numerical Determination of Intrinsic Diffusion Coefficient of Aluminide Coatings on Metals

2009

This paper presents a numerical method to determine the composition dependent diffusivities and to predict the concentration profile during the interdiffusion process. The intrinsic diffusion coefficients in diffusion aluminide coatings (Fe-Al) were determined at 1000oC. The obtained diffusion coefficient for iron in Fe3Al or FeAl is in the range 10-10 to 10-9 cm2.s-1. The aluminum diffusion coefficient varies from 10-11 to 10-7 cm2.s-1 in the same phases.The present approach also permits to model the reactive diffusion in the Fe-Al systems.

RadiationMaterials scienceMetallurgyIntermetallicThermodynamicschemistry.chemical_elementFEALCondensed Matter PhysicsDiffusion layerchemistryAluminiumEffective diffusion coefficientGrain boundary diffusion coefficientGeneral Materials ScienceDiffusion (business)AluminideDefect and Diffusion Forum
researchProduct

Very Long-Distance Magnetic Coupling in a Dicopper(II) Metallacyclophane with Extended π-Conjugated Diphenylethyne Bridges

2011

Self-assembly of the rigid rodlike ligand N,N'-4,4'-diphenylethynebis(oxamate) (dpeba) and Cu(2+) ions affords a novel dinuclear copper(II) metallacyclophane (nBu(4)N)(4)[Cu(2)(dpeba)(2)]·4MeOH·2Et(2)O (1) featuring a very long intermetallic distance (r = 15.0 Å). Magnetic susceptibility measurements for 1 reveal a moderately weak but nonnegligible intramolecular antiferromagnetic coupling between the two metal centers across the double para-substituted diphenylethynediamidate bridge (J = -3.9 cm(-1); H = -JS(1)S(2), where S(1) = S(2) = S(Cu) = (1)/(2)). Density functional electronic structure calculations on 1 support the occurrence of a spin polarization mechanism.

Spin polarizationChemistryLigandIntermetallicchemistry.chemical_elementElectronic structurePhotochemistryInductive couplingCopperMagnetic susceptibilityInorganic ChemistryCrystallographyIntramolecular forcePhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Dicopper(II) metallacyclophanes with photoswitchable oligoacene spacers: a joint experimental and computational study on molecular magnetic photoswit…

2018

Dinuclear copper(II) complexes of the metallacyclophane-type, (nBu4N)4[Cu2(2,6-anba)2] (1) and (nBu4N)4[Cu2(1,5-naba)2]·4H2O (2) with photoactive 2,6-anthracene-(2,6-anba) and 1,5-naphthalenebis(oxamate) (1,5-naba) bridging ligands, are reported. They undergo a thermally reversible, solid-state photomagnetic (ON/OFF) switching between the moderately strong antiferromagnetically coupled dicopper(II) species and the corresponding magnetically uncoupled [4+4] photocycloaddition product. Density functional calculations give further insights on the intramolecular (“pseudo-bimolecular”) photocycloaddition reaction of the two facing 2,6-anthracene or 1,5-naphthalene spacers in this novel family of…

Spintronics010405 organic chemistryChemistryIntermetallicchemistry.chemical_elementOligoacenes010402 general chemistry01 natural sciencesCopper0104 chemical sciencesIonPhotochemical reactivityCrystallographyDensity functional calculationsIntramolecular forceMagnetic propertiesMaterials ChemistryAntiferromagnetismPhotochemical reactivityPhysical and Theoretical ChemistryCopper
researchProduct

Intermetallic compounds of the heaviest elements: the electronic structure and bonding of dimers of element 112 and its homolog Hg

2002

Abstract Fully relativistic (four-component) density-functional calculations were performed for the element 112 dimers (112)X (X = Pd, Cu, Ag and Au) and those of its lighter homolog, Hg. A relatively small decrease of about 15–20 kJ/mol in bonding was found from the HgX to (112)X compounds. Respectively, the bond lengths were increased by 0.06 A on the average. The Mulliken population analysis has shown this effect to be a result of a decreasing contribution of the relativistically stabilized 7s-AO of element 112 to bonding. The following trend in the binding energies was predicted for (112)X as a function of X: Pd >Cu>Au>Ag, exactly as the trend obtained experimentally for adsorption of H…

StereochemistryChemistryBinding energyIntermetallicGeneral Physics and AstronomyElectronic structureMetalBond lengthCrystallographyAdsorptionGold Compoundsvisual_artvisual_art.visual_art_mediumPhysical and Theoretical ChemistryMulliken population analysisChemical Physics Letters
researchProduct

Structure and superconductivity in LnNi2B2C: comparison of calculation and experiment

2001

Abstract The experimental relation between the superconducting transition temperature ( T c ) and lattice size for the lanthanide nickel borocarbides is clarified. The electronic density of states (DOS) at the Fermi energy is calculated by the LMTO method for selected non-magnetic lanthanides. The T c and the DOS are both shown to scale in the same way with a structural parameter that characterizes the bond angle in the NiB 4 tetrahedra. The results strongly support arguments that the suppression of superconductivity on going from smaller to larger lanthanides in the quaternary nickel borocarbides is structurally driven. A structure– T c relationship of this type is unusual for intermetalli…

SuperconductivityLanthanideCondensed matter physicsIntermetallicchemistry.chemical_elementFermi energyGeneral ChemistryCondensed Matter PhysicsCondensed Matter::Materials ScienceNickelMolecular geometryTight bindingchemistryCondensed Matter::SuperconductivityMaterials ChemistryTetrahedronCondensed Matter::Strongly Correlated ElectronsSolid State Communications
researchProduct

Crystal structure and physical properties of Mg6Cu16Si7-type M6Ni16Si7, for M=Mg, Sc, Ti, Nb, and Ta

2008

Five compounds were investigated for magnetic character and superconductivity, all with non-magnetic nickel and band structures containing flat bands and steep bands. The syntheses and crystal structures, refined by powder X-ray diffraction, are reported for M{sub 6}Ni{sub 16}Si{sub 7}, where M = Mg, Sc, Ti, Nb, and Ta. All compounds form in the Mg{sub 6}Cu{sub 16}Si{sub 7} structure type. Resistance measurements are also reported on M{sub 6}Ni{sub 16}Si{sub 7} (M = Mg, Sc, Ti, and Nb) down to 0.3 K, with all four showing metallic conductivity. No superconductivity is observed. Magnetization measurements for all compounds reveal essentially temperature independent paramagnetism, with a tend…

SuperconductivityMaterials scienceMechanical EngineeringMetallurgyIntermetallicchemistry.chemical_elementCrystal structureType (model theory)Condensed Matter PhysicsNickelParamagnetismMagnetizationCrystallographychemistryMechanics of MaterialsX-ray crystallographyGeneral Materials ScienceMaterials Research Bulletin
researchProduct

Superconductivity in the Heusler Family of Intermetallics

2012

Several physical properties of the superconducting Heusler compounds, focusing on two systems (Y, Lu, Sc)Pd2Sn and APd2M, where A=Hf, Zr and M=Al, In, are summarized and compared. The analysis of the data shows the importance of the electron-phonon coupling for superconductivity in this family. We report the superconducting parameters of YPd2Sn, which has the highest Tc among all known Heusler superconductors.

SuperconductivityPhysicsCondensed Matter - Materials ScienceCondensed matter physicsCondensed Matter - SuperconductivityIntermetallicMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsCoupling (probability)01 natural sciences3. Good healthElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Condensed Matter::Materials ScienceCondensed Matter::Superconductivity0103 physical sciences010306 general physics0210 nano-technology
researchProduct

MoSi2 laser cladding—a comparison between two experimental procedures: Mo–Si online combination and direct use of MoSi2

2001

International audience; There are very strong interests in developing low density advanced material systems for service at temperatures up to 1300°C. These materials should mainly have moderate fracture toughness at low and intermediate temperatures and should exhibit oxidation resistant behaviour. The intermetallic compound, MoSi2 has been considered to be an attractive candidate due to its melting point (2030°C) and excellent oxidation resistance at high temperatures. In this paper, we compare the results obtained with two different techniques for laser cladding, one using an online combination between Mo and Si powders, the second using direct injection of the MoSi2 powder.

TechnologyMaterials scienceOxidation resistantIntermetallic[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Laser02 engineering and technology01 natural scienceslaw.inventionFracture toughnesslaw0103 physical sciencesLow densityElectrical and Electronic EngineeringComposite materialOxidation resistance010302 applied physicsMaterial system021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsMelting point[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Powders0210 nano-technology
researchProduct

Preparation of thin films of the ternary heavy fermion system CeNi 2 Ge 2

1998

Ge2 layers on W(110). In order to produce well-ordered and atomically clean surfaces of the Ce-based intermetallic system the growth was performed under UHV conditions (p<2×10-11 mbar). Both the polycrystalline CeNi2Ge2 compound and the individual elements Ce, Ni, and Ge were used as evaporants. The characterisation of the layers was made with LEED, SEM, and XPS. We find a significant influence of the substrate temperature and the evaporation power on the growth characteristics. The compound material CeNi2Ge2 exhibits complicated behaviour when evaporated. Under carefully selected growth conditions we obtain well-ordered films with a stoichiometry of Ce:Ni:Ge=1:2:2 and a (001) oriented surf…

Tetragonal crystal systemValence (chemistry)X-ray photoelectron spectroscopyChemistryIntermetallicAnalytical chemistryMineralogyGeneral Materials ScienceGeneral ChemistryCrystalliteThin filmTernary operationVacuum evaporationApplied Physics A: Materials Science &amp; Processing
researchProduct

Water vapor effect on high-temperature oxidation behavior of Fe3Al intermetallics

2009

Fe3Al intermetallics (Fe3Al, Fe3Al-Zr, Fe3Al-Zr,Mo and Fe3Al-Zr, Mo, Nb) were oxidized at 950 °C in dry and humid (11 vol% water) synthetic air. Thermogravimetric measurements showed that the oxidation rates of the tested intermetallics were lower in humid air than in dry air (especially for Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb). The addition of small amounts of Zr, Mo or Nb improved the kinetics compared with that of the undoped Fe3Al. Fe3Al showed massive spallation, whereas Fe3Al-Zr, Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb produced a flat, adherent oxide layer. The rapid transformation of transient alumina into alpha alumina may explain the decrease in the oxidation rate in humid air.

Thermogravimetric analysisMaterials scienceMetallurgyKineticsOxideAnalytical chemistryIntermetallicchemistry.chemical_compoundchemistryGeneral Materials ScienceSpallationLayer (electronics)Water vaporOxidation rateScience and Technology of Advanced Materials
researchProduct