Search results for "Interpolation"

showing 10 items of 331 documents

Numerical Approximation of Elliptic Variational Problems

2003

This chapter is dedicated to the study of Elliptic Variational Inequalities (EVI). Different forms of such an EVI are considered. The Ritz—Galerkin discretization method is introduced, and methods to approximate the solution of an EVI are presented. The finite dimensional subspaces are built by use of the Finite Element Method. The discretized problems are solved using variants of the Successive OverRelaxation (SOR) method. The algorithms are tested on a typical example. The way to develop computer programs is carefully analysed.

Mathematical optimizationMathematics::ProbabilityNumerical approximationDiscretizationVariational inequalityPendulum (mathematics)Interpolation operatorApplied mathematicsSeepage flowLinear subspaceFinite element methodMathematics
researchProduct

Approximate survival probability determination of hysteretic systems with fractional derivative elements

2018

Abstract A Galerkin scheme-based approach is developed for determining the survival probability and first-passage probability of a randomly excited hysteretic systems endowed with fractional derivative elements. Specifically, by employing a combination of statistical linearization and of stochastic averaging, the amplitude of the system response is modeled as one-dimensional Markovian Process. In this manner the corresponding backward Kolmogorov equation which governs the evolution of the survival probability of the system is determined. An approximate solution of this equation is sought by employing a Galerkin scheme in which a convenient set of confluent hypergeometric functions is used a…

Mathematical optimizationMonte Carlo methodAerospace EngineeringBilinear interpolationMarkov processOcean Engineering02 engineering and technology01 natural sciencesHysteretic systemsymbols.namesake0203 mechanical engineering0103 physical sciencesApplied mathematicsHypergeometric functionGalerkin method010301 acousticsCivil and Structural EngineeringMathematicsGalerkin approachMechanical EngineeringStatistical and Nonlinear PhysicsFractional derivativeCondensed Matter PhysicsOrthogonal basisFractional calculus020303 mechanical engineering & transportsAmplitudeNuclear Energy and EngineeringsymbolsSurvival probabilitySettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Error bounds for a convexity-preserving interpolation and its limit function

2008

AbstractError bounds between a nonlinear interpolation and the limit function of its associated subdivision scheme are estimated. The bounds can be evaluated without recursive subdivision. We show that this interpolation is convexity preserving, as its associated subdivision scheme. Finally, some numerical experiments are presented.

Mathematical optimizationNonlinear subdivision schemesbusiness.industryApplied MathematicsNumerical analysisMathematicsofComputing_NUMERICALANALYSISStairstep interpolationComputer Science::Computational GeometryConvexityMultivariate interpolationComputational MathematicsError boundsComputer Science::GraphicsNearest-neighbor interpolationTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONApplied mathematicsComputer Science::Symbolic ComputationConvexity preservingbusinessSpline interpolationSubdivisionInterpolationMathematicsComputingMethodologies_COMPUTERGRAPHICSJournal of Computational and Applied Mathematics
researchProduct

Comparison of continuous and discontinuous Galerkin approaches for variable-viscosity Stokes flow

2015

We describe a Discontinuous Galerkin (DG) scheme for variable-viscosity Stokes flow which is a crucial aspect of many geophysical modelling applications and conduct numerical experiments with different elements comparing the DG approach to the standard Finite Element Method (FEM). We compare the divergence-conforming lowest-order Raviart-Thomas (RT0P0) and Brezzi-Douglas-Marini (BDM1P0) element in the DG scheme with the bilinear Q1P0 and biquadratic Q2P1 elements for velocity and their matching piecewise constant/linear elements for pressure in the standard continuous Galerkin (CG) scheme with respect to accuracy and memory usage in 2D benchmark setups. We find that for the chosen geodynami…

Mathematical optimizationbusiness.industryApplied MathematicsComputational MechanicsBilinear interpolationComputational fluid dynamicsStokes flow010502 geochemistry & geophysics01 natural sciencesFinite element method010101 applied mathematicsDiscontinuous Galerkin methodConvergence (routing)PiecewiseBenchmark (computing)Applied mathematics0101 mathematicsbusiness0105 earth and related environmental sciencesMathematicsZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
researchProduct

Physics Contributions Evaluation of interpolation methods for TG-43 dosimetric parameters based on comparison with Monte Carlo data for high-energy b…

2010

Purpose: The aim of this work was to determine dose distributions for high-energy brachytherapy sources at spa- tial locations not included in the radial dose function gL(r) and 2D anisotropy function F(r,θ) table entries for radial dis- tance r and polar angle θ. The objectives of this study are as follows: 1) to evaluate interpolation methods in order to accurately derive gL(r) and F(r,θ) from the reported data; 2) to determine the minimum number of entries in gL(r) and F(r,θ) that allow reproduction of dose distributions with sufficient accuracy. Material and methods: Four high-energy photon-emitting brachytherapy sources were studied: 60Co model Co0.A86, 137Cs model CSM-3, 192Ir model I…

Mathematical optimizationbusiness.industrymedicine.medical_treatmentBrachytherapyMathematical analysisMonte Carlo methodBilinear interpolationFunction (mathematics)Linear interpolationOncologymedicineDosimetryRadiology Nuclear Medicine and imagingPolar coordinate systembusinessInterpolationJournal of Contemporary Brachytherapy
researchProduct

The Bishop–Phelps–Bollobás point property

2016

Abstract In this article, we study a version of the Bishop–Phelps–Bollobas property. We investigate a pair of Banach spaces ( X , Y ) such that every operator from X into Y is approximated by operators which attain their norm at the same point where the original operator almost attains its norm. In this case, we say that such a pair has the Bishop–Phelps–Bollobas point property (BPBpp). We characterize uniform smoothness in terms of BPBpp and we give some examples of pairs ( X , Y ) which have and fail this property. Some stability results are obtained about l 1 and l ∞ sums of Banach spaces and we also study this property for bilinear mappings.

Mathematics::Functional AnalysisApplied Mathematics010102 general mathematicsBanach spaceBilinear interpolationStability resultBilinear form01 natural sciences010101 applied mathematicsCombinatoricsOperator (computer programming)Norm (mathematics)0101 mathematicsBishop–Phelps theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

A fully adaptive multiresolution scheme for image processing

2007

A nonlinear multiresolution scheme within Harten's framework [A. Harten, Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math. 12 (1993) 153-192; A. Harten, Multiresolution representation of data II, SIAM J. Numer. Anal. 33 (3) (1996) 1205-1256] is presented. It is based on a centered piecewise polynomial interpolation fully adapted to discontinuities. Compression properties of the multiresolution scheme are studied on various numerical experiments on images.

Mathematics::Functional AnalysisPolynomialNumerical analysisMultiresolution analysisImage processingComputer Science ApplicationsPolynomial interpolationWaveletModelling and SimulationComputer Science::Computer Vision and Pattern RecognitionModeling and SimulationCompression (functional analysis)CalculusPiecewiseAlgorithmMathematicsMathematical and Computer Modelling
researchProduct

Mapping properties for the Bargmann transform on modulation spaces

2010

We investigate mapping properties for the Bargmann transform and prove that this transform is isometric and bijective from modulation spaces to convenient Banach spaces of analytic functions.

Mathematics::Functional AnalysisPure mathematicsModulation spaceFunctional analysisMathematics - Complex Variablesbijectivity propertiesApplied MathematicsSpectrum (functional analysis)Banach spaceOperator theoryComputer Science::Digital LibrariesVDP::Mathematics and natural science: 400::Mathematics: 410Algebraharmonic oscillatorhermite functionsBerezin–Toeplitz operatorsFOS: MathematicsInterpolation spaceBirnbaum–Orlicz spaceComplex Variables (math.CV)Lp spaceAnalysisMathematicsJournal of Pseudo-Differential Operators and Applications
researchProduct

Discrete Maximum Principle for Galerkin Finite Element Solutions to Parabolic Problems on Rectangular Meshes

2004

One of the most important problems in numerical simulation is the preservation of qualitative properties of solutions of mathematical models. For problems of parabolic type, one of such properties is the maximum principle. In [5], Fujii analyzed the discrete analogue of the (continuous) maximum principle for the linear parabolic problems, and derived sufficient conditions guaranteeing its validity for the Galerkin finite element approximations built on simplicial meshes. In our paper, we present the sufficient conditions for the validity of the discrete maximum principle for the case of bilinear finite element space approximations on rectangular meshes.

Maximum principleComputer simulationMathematical modelDiscontinuous Galerkin methodBilinear interpolationApplied mathematicsPolygon meshGalerkin methodFinite element methodMathematics
researchProduct

Identification of linear parameter varying models

2002

We consider identification of a certain class of discrete-time nonlinear systems known as linear parameter varying system. We assume that inputs, outputs and the scheduling parameters are directly measured, and a form of the functional dependence of the system coefficients on the parameters is known. We show how this identification problem can be reduced to a linear regression, and provide compact formulae for the corresponding least mean square and recursive least-squares algorithms. We derive conditions on persistency of excitation in terms of the inputs and scheduling parameter trajectories when the functional dependence is of polynomial type. These conditions have a natural polynomial i…

Mechanical EngineeringGeneral Chemical EngineeringBiomedical EngineeringAerospace EngineeringIndustrial and Manufacturing EngineeringPolynomial interpolationScheduling (computing)Parameter identification problemLeast mean squares filterNonlinear systemControl and Systems EngineeringControl theoryLinear regressionApplied mathematicsElectrical and Electronic EngineeringMathematicsInternational Journal of Robust and Nonlinear Control
researchProduct