6533b86cfe1ef96bd12c8d16

RESEARCH PRODUCT

Error bounds for a convexity-preserving interpolation and its limit function

Jacques LiandratSergio AmatJuan Carlos TrilloK. DadourianRosa Donat

subject

Mathematical optimizationNonlinear subdivision schemesbusiness.industryApplied MathematicsNumerical analysisMathematicsofComputing_NUMERICALANALYSISStairstep interpolationComputer Science::Computational GeometryConvexityMultivariate interpolationComputational MathematicsError boundsComputer Science::GraphicsNearest-neighbor interpolationTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONApplied mathematicsComputer Science::Symbolic ComputationConvexity preservingbusinessSpline interpolationSubdivisionInterpolationMathematicsComputingMethodologies_COMPUTERGRAPHICS

description

AbstractError bounds between a nonlinear interpolation and the limit function of its associated subdivision scheme are estimated. The bounds can be evaluated without recursive subdivision. We show that this interpolation is convexity preserving, as its associated subdivision scheme. Finally, some numerical experiments are presented.

10.1016/j.cam.2006.11.003http://dx.doi.org/10.1016/j.cam.2006.11.003