0000000000073040

AUTHOR

Juan Carlos Trillo

showing 6 related works from this author

Improving the stability bound for the PPH nonlinear subdivision scheme for data coming from strictly convex functions

2021

Abstract Subdivision schemes are widely used in the generation of curves and surfaces, and therefore they are applied in a variety of interesting applications from geological reconstructions of unaccessible regions to cartoon film productions or car and ship manufacturing. In most cases dealing with a convexity preserving subdivision scheme is needed to accurately reproduce the required surfaces. Stability respect to the initial input data is also crucial in applications. The so called PPH nonlinear subdivision scheme is proven to be both convexity preserving and stable. The tighter the stability bound the better controlled is the final output error. In this article a more accurate stabilit…

Nonlinear subdivision0209 industrial biotechnologybusiness.industryComputer scienceApplied MathematicsStability (learning theory)020206 networking & telecommunications02 engineering and technologyConvexityComputational MathematicsNonlinear system020901 industrial engineering & automationScheme (mathematics)0202 electrical engineering electronic engineering information engineeringApplied mathematicsVariety (universal algebra)businessConvex functionComputingMethodologies_COMPUTERGRAPHICSSubdivisionApplied Mathematics and Computation
researchProduct

Proving convexity preserving properties of interpolatory subdivision schemes through reconstruction operators

2013

We introduce a new approach towards proving convexity preserving properties for interpolatory subdivision schemes. Our approach is based on the relation between subdivision schemes and prediction operators within Harten's framework for multiresolution, and hinges on certain convexity properties of the reconstruction operator associated to prediction. Our results allow us to recover certain known results [10,8,1,7]. In addition, we are able to determine the necessary conditions for convexity preservation of the family of subdivision schemes based on the Hermite interpolation considered in [4].

AlgebraDiscrete mathematicsComputational MathematicsOperator (computer programming)Relation (database)business.industryHermite interpolationApplied MathematicsbusinessConvexityMathematicsSubdivisionApplied Mathematics and Computation
researchProduct

On the use of generalized harmonic means in image processing using multiresolution algorithms

2019

In this paper we design a family of cell-average nonlinear prediction operators that make use of the generalized harmonic means and we apply the resulting schemes to image processing. The new famil...

business.industryApplied MathematicsHarmonic meanStability (learning theory)Image processing010103 numerical & computational mathematics01 natural sciencesNonlinear predictionComputer Science Applications010101 applied mathematicsComputational Theory and Mathematics0101 mathematicsbusinessAlgorithmNonlinear operatorsSubdivisionMathematicsInternational Journal of Computer Mathematics
researchProduct

On the application of the generalized means to construct multiresolution schemes satisfying certain inequalities proving stability

2021

Multiresolution representations of data are known to be powerful tools in data analysis and processing, and they are particularly interesting for data compression. In order to obtain a proper definition of the edges, a good option is to use nonlinear reconstructions. These nonlinear reconstruction are the heart of the prediction processes which appear in the definition of the nonlinear subdivision and multiresolution schemes. We define and study some nonlinear reconstructions based on the use of nonlinear means, more in concrete the so-called Generalized means. These means have two interesting properties that will allow us to get associated reconstruction operators adapted to the presence o…

Computer scienceGeneral Mathematicslcsh:MathematicsStability (learning theory)010103 numerical & computational mathematicsConstruct (python library)Classification of discontinuitiesstability analysislcsh:QA1-93901 natural sciences010101 applied mathematicsNonlinear systemTensor productmultiresolutionScheme (mathematics)Computer Science (miscellaneous)Applied mathematicsnonlinearmeansGeneralized mean0101 mathematicssubdivision schemeEngineering (miscellaneous)data compressionData compression
researchProduct

Error bounds for a convexity-preserving interpolation and its limit function

2008

AbstractError bounds between a nonlinear interpolation and the limit function of its associated subdivision scheme are estimated. The bounds can be evaluated without recursive subdivision. We show that this interpolation is convexity preserving, as its associated subdivision scheme. Finally, some numerical experiments are presented.

Mathematical optimizationNonlinear subdivision schemesbusiness.industryApplied MathematicsNumerical analysisMathematicsofComputing_NUMERICALANALYSISStairstep interpolationComputer Science::Computational GeometryConvexityMultivariate interpolationComputational MathematicsError boundsComputer Science::GraphicsNearest-neighbor interpolationTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONApplied mathematicsComputer Science::Symbolic ComputationConvexity preservingbusinessSpline interpolationSubdivisionInterpolationMathematicsComputingMethodologies_COMPUTERGRAPHICSJournal of Computational and Applied Mathematics
researchProduct

On new means with interesting practical applications: Generalized power means

2021

Means of positive numbers appear in many applications and have been a traditional matter of study. In this work, we focus on defining a new mean of two positive values with some properties which are essential in applications, ranging from subdivision and multiresolution schemes to the numerical solution of conservation laws. In particular, three main properties are crucial—in essence, the ideas of these properties are roughly the following: to stay close to the minimum of the two values when the two arguments are far away from each other, to be quite similar to the arithmetic mean of the two values when they are similar and to satisfy a Lipchitz condition. We present new means with these pr…

Subdivision schemeWork (thermodynamics)Conservation lawbusiness.industry12 MatemáticasGeneral MathematicsNonlinear meansnonlinear meansStability analysisRangingMatemática Aplicadastability analysisPower (physics)Section (archaeology)Computer Science (miscellaneous)QA1-939Applied mathematicsbusinessFocus (optics)subdivision schemeEngineering (miscellaneous)MathematicsMathematicsArithmetic meanSubdivision
researchProduct