0000000000299388

AUTHOR

Sergio Amat

showing 15 related works from this author

Third-order iterative methods without using any Fréchet derivative

2003

AbstractA modification of classical third-order methods is proposed. The main advantage of these methods is they do not need to evaluate any Fréchet derivative. A convergence theorem in Banach spaces, just assuming the second divided difference is bounded and a punctual condition, is analyzed. Finally, some numerical results are presented.

Computational MathematicsIterative methodFréchet spaceBounded functionApplied MathematicsMathematical analysisConvergence (routing)Banach spaceFréchet derivativeApplied mathematicsQuasi-derivativeCauchy sequenceMathematicsJournal of Computational and Applied Mathematics
researchProduct

A fully adaptive multiresolution scheme for image processing

2007

A nonlinear multiresolution scheme within Harten's framework [A. Harten, Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math. 12 (1993) 153-192; A. Harten, Multiresolution representation of data II, SIAM J. Numer. Anal. 33 (3) (1996) 1205-1256] is presented. It is based on a centered piecewise polynomial interpolation fully adapted to discontinuities. Compression properties of the multiresolution scheme are studied on various numerical experiments on images.

Mathematics::Functional AnalysisPolynomialNumerical analysisMultiresolution analysisImage processingComputer Science ApplicationsPolynomial interpolationWaveletModelling and SimulationComputer Science::Computer Vision and Pattern RecognitionModeling and SimulationCompression (functional analysis)CalculusPiecewiseAlgorithmMathematicsMathematical and Computer Modelling
researchProduct

Proving convexity preserving properties of interpolatory subdivision schemes through reconstruction operators

2013

We introduce a new approach towards proving convexity preserving properties for interpolatory subdivision schemes. Our approach is based on the relation between subdivision schemes and prediction operators within Harten's framework for multiresolution, and hinges on certain convexity properties of the reconstruction operator associated to prediction. Our results allow us to recover certain known results [10,8,1,7]. In addition, we are able to determine the necessary conditions for convexity preservation of the family of subdivision schemes based on the Hermite interpolation considered in [4].

AlgebraDiscrete mathematicsComputational MathematicsOperator (computer programming)Relation (database)business.industryHermite interpolationApplied MathematicsbusinessConvexityMathematicsSubdivisionApplied Mathematics and Computation
researchProduct

On the use of generalized harmonic means in image processing using multiresolution algorithms

2019

In this paper we design a family of cell-average nonlinear prediction operators that make use of the generalized harmonic means and we apply the resulting schemes to image processing. The new famil...

business.industryApplied MathematicsHarmonic meanStability (learning theory)Image processing010103 numerical & computational mathematics01 natural sciencesNonlinear predictionComputer Science Applications010101 applied mathematicsComputational Theory and Mathematics0101 mathematicsbusinessAlgorithmNonlinear operatorsSubdivisionMathematicsInternational Journal of Computer Mathematics
researchProduct

Tensor product multiresolution analysis with error control for compact image representation

2002

A class of multiresolution representations based on nonlinear prediction is studied in the multivariate context based on tensor product strategies. In contrast to standard linear wavelet transforms, these representations cannot be thought of as a change of basis, and the error induced by thresholding or quantizing the coefficients requires a different analysis. We propose specific error control algorithms which ensure a prescribed accuracy in various norms when performing such operations on the coefficients. These algorithms are compared with standard thresholding, for synthetic and real images.

Discrete mathematicsMultiresolution analysisMathematicsofComputing_NUMERICALANALYSISWavelet transformImage processingReal imageThresholdingTensor productControl and Systems EngineeringSignal ProcessingComputer Vision and Pattern RecognitionElectrical and Electronic EngineeringChange of basisAlgorithmSoftwareMathematicsImage compressionSignal Processing
researchProduct

On specific stability bounds for linear multiresolution schemes based on piecewise polynomial Lagrange interpolation

2009

Abstract The Deslauriers–Dubuc symmetric interpolation process can be considered as an interpolatory prediction scheme within Harten's framework. In this paper we express the Deslauriers–Dubuc prediction operator as a combination of either second order or first order differences. Through a detailed analysis of certain contractivity properties, we arrive to specific l ∞ -stability bounds for the multiresolution transform. A variety of tests indicate that these l ∞ bounds are closer to numerical estimates than those obtained with other approaches.

PolynomialApplied MathematicsMathematical analysisLagrange polynomialStability (probability)Polynomial interpolationsymbols.namesakeOperator (computer programming)Piecewise Lagrange interpolationsymbolsPiecewiseStabilityLinear multiresolutionAnalysisNumerical stabilityInterpolationMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Cell-average WENO with progressive order of accuracy close to discontinuities with applications to signal processing

2020

In this paper we translate to the cell-average setting the algorithm for the point-value discretization presented in S. Amat, J. Ruiz, C.-W. Shu, D. F. Y\'a\~nez, A new WENO-2r algorithm with progressive order of accuracy close to discontinuities, submitted to SIAM J. Numer. Anal.. This new strategy tries to improve the results of WENO-($2r-1$) algorithm close to the singularities, resulting in an optimal order of accuracy at these zones. The main idea is to modify the optimal weights so that they have a nonlinear expression that depends on the position of the discontinuities. In this paper we study the application of the new algorithm to signal processing using Harten's multiresolution. Se…

Signal processing0209 industrial biotechnologyDiscretizationComputer science02 engineering and technologyClassification of discontinuitiesCell-averageMathematics::Numerical Analysis020901 industrial engineering & automationImproved adaption to discontinuitiesNew optimal weightsPosition (vector)Multiresolution schemesFOS: Mathematics0202 electrical engineering electronic engineering information engineeringMathematics - Numerical AnalysisSignal processingWENO65D05 65D17 65M06 65N0612 MatemáticasApplied MathematicsOrder of accuracyMatemática Aplicada020206 networking & telecommunicationsNumerical Analysis (math.NA)Expression (mathematics)Computational MathematicsNonlinear systemGravitational singularityAlgorithmApplied Mathematics and Computation
researchProduct

Data Compression with ENO Schemes: A Case Study

2001

Abstract We study the compresion properties of ENO-type nonlinear multiresolution transformations on digital images. Specific error control algorithms are used to ensure a prescribed accuracy. The numerical results reveal that these methods strongly outperform the more classical wavelet decompositions in the case of piecewise smooth geometric images.

Nonlinear systemDigital imageWaveletTheoretical computer scienceApplied MathematicsMathematicsofComputing_NUMERICALANALYSISComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPiecewiseError detection and correctionAlgorithmComputingMethodologies_COMPUTERGRAPHICSMathematicsData compressionApplied and Computational Harmonic Analysis
researchProduct

A Polynomial Approach to the Piecewise Hyperbolic Method

2003

In this paper, a local (third-order accurate) shock capturing method for hyperbolic conservation laws is presented. The method has been made with the same idea as the PHM method, but with a simpler reconstruction. A comparison with the classic high order methods is discussed.

Conservation lawPolynomialMechanical EngineeringHyperbolic functionMathematical analysisComputational MechanicsEnergy Engineering and Power TechnologyAerospace EngineeringCondensed Matter PhysicsMechanics of MaterialsShock capturing methodPiecewiseHigh orderHyperbolic partial differential equationMathematicsInternational Journal of Computational Fluid Dynamics
researchProduct

On a new centered strategy to control the accuracy of weighted essentially non oscillatory algorithm for conservation laws close to discontinuities

2020

Computational MathematicsNumerical AnalysisConservation lawApplied MathematicsApplied mathematicsClassification of discontinuitiesControl (linguistics)AnalysisMathematicsNumerical Methods for Partial Differential Equations
researchProduct

On the application of the generalized means to construct multiresolution schemes satisfying certain inequalities proving stability

2021

Multiresolution representations of data are known to be powerful tools in data analysis and processing, and they are particularly interesting for data compression. In order to obtain a proper definition of the edges, a good option is to use nonlinear reconstructions. These nonlinear reconstruction are the heart of the prediction processes which appear in the definition of the nonlinear subdivision and multiresolution schemes. We define and study some nonlinear reconstructions based on the use of nonlinear means, more in concrete the so-called Generalized means. These means have two interesting properties that will allow us to get associated reconstruction operators adapted to the presence o…

Computer scienceGeneral Mathematicslcsh:MathematicsStability (learning theory)010103 numerical & computational mathematicsConstruct (python library)Classification of discontinuitiesstability analysislcsh:QA1-93901 natural sciences010101 applied mathematicsNonlinear systemTensor productmultiresolutionScheme (mathematics)Computer Science (miscellaneous)Applied mathematicsnonlinearmeansGeneralized mean0101 mathematicssubdivision schemeEngineering (miscellaneous)data compressionData compression
researchProduct

A class of quasi-Newton generalized Steffensen methods on Banach spaces

2002

AbstractWe consider a class of generalized Steffensen iterations procedure for solving nonlinear equations on Banach spaces without any derivative. We establish the convergence under the Kantarovich–Ostrowski's conditions. The majorizing sequence will be a Newton's type sequence, thus the convergence can have better properties. Finally, a numerical comparation with the classical methods is presented.

SequenceClass (set theory)Applied MathematicsMathematical analysisBanach spaceKantarovich conditionsType (model theory)Nonlinear equationsGeneralized Steffensen methodsSteffensen's methodNonlinear systemComputational MathematicsConvergence (routing)Applied mathematicsQuasi-Newton methodMathematicsJournal of Computational and Applied Mathematics
researchProduct

Local Total Variation Bounded Methods for Hyperbolic Conservation Laws

2003

Computational MathematicsConservation lawVariation (linguistics)Bounded functionMathematical analysisGeneral EngineeringComputer Science ApplicationsMathematicsJournal of Computational Methods in Sciences and Engineering
researchProduct

Error bounds for a convexity-preserving interpolation and its limit function

2008

AbstractError bounds between a nonlinear interpolation and the limit function of its associated subdivision scheme are estimated. The bounds can be evaluated without recursive subdivision. We show that this interpolation is convexity preserving, as its associated subdivision scheme. Finally, some numerical experiments are presented.

Mathematical optimizationNonlinear subdivision schemesbusiness.industryApplied MathematicsNumerical analysisMathematicsofComputing_NUMERICALANALYSISStairstep interpolationComputer Science::Computational GeometryConvexityMultivariate interpolationComputational MathematicsError boundsComputer Science::GraphicsNearest-neighbor interpolationTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONApplied mathematicsComputer Science::Symbolic ComputationConvexity preservingbusinessSpline interpolationSubdivisionInterpolationMathematicsComputingMethodologies_COMPUTERGRAPHICSJournal of Computational and Applied Mathematics
researchProduct

On new means with interesting practical applications: Generalized power means

2021

Means of positive numbers appear in many applications and have been a traditional matter of study. In this work, we focus on defining a new mean of two positive values with some properties which are essential in applications, ranging from subdivision and multiresolution schemes to the numerical solution of conservation laws. In particular, three main properties are crucial—in essence, the ideas of these properties are roughly the following: to stay close to the minimum of the two values when the two arguments are far away from each other, to be quite similar to the arithmetic mean of the two values when they are similar and to satisfy a Lipchitz condition. We present new means with these pr…

Subdivision schemeWork (thermodynamics)Conservation lawbusiness.industry12 MatemáticasGeneral MathematicsNonlinear meansnonlinear meansStability analysisRangingMatemática Aplicadastability analysisPower (physics)Section (archaeology)Computer Science (miscellaneous)QA1-939Applied mathematicsbusinessFocus (optics)subdivision schemeEngineering (miscellaneous)MathematicsMathematicsArithmetic meanSubdivision
researchProduct