6533b85ffe1ef96bd12c1327

RESEARCH PRODUCT

A class of quasi-Newton generalized Steffensen methods on Banach spaces

Sonia BusquierVicente F. CandelaSergio Amat

subject

SequenceClass (set theory)Applied MathematicsMathematical analysisBanach spaceKantarovich conditionsType (model theory)Nonlinear equationsGeneralized Steffensen methodsSteffensen's methodNonlinear systemComputational MathematicsConvergence (routing)Applied mathematicsQuasi-Newton methodMathematics

description

AbstractWe consider a class of generalized Steffensen iterations procedure for solving nonlinear equations on Banach spaces without any derivative. We establish the convergence under the Kantarovich–Ostrowski's conditions. The majorizing sequence will be a Newton's type sequence, thus the convergence can have better properties. Finally, a numerical comparation with the classical methods is presented.

10.1016/s0377-0427(02)00484-3http://dx.doi.org/10.1016/s0377-0427(02)00484-3