Search results for "Intestinal microbiome"

showing 10 items of 186 documents

Gut microbiota and osteoarthritis management: An expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoart…

2019

Berenbaum, Francis/0000-0001-8252-7815; Dennison, Elaine/0000-0002-3048-4961; Bindels, Laure B./0000-0003-3747-3234; Cooper, Cyrus/0000-0003-3510-0709 WOS:000491638300002 PubMed ID: 31437484 The prevalence of osteoarthritis (OA) increases not only because of longer life expectancy but also because of the modern lifestyle, in particular physical inactivity and diets low in fiber and rich in sugar and saturated fats, which promote chronic low-grade inflammation and obesity. Adverse alterations of the gut microbiota (GMB) composition, called microbial dysbiosis, may favor metabolic syndrome and inflammaging, two important components of OA onset and evolution. Considering the burden of OA and t…

0301 basic medicineAgingmedicine.medical_specialtyOsteoporosisPsychological interventionOsteoarthritisGut microbiotaGut floraDysbiosis; Gut microbiota; Inflammaging; Modern diet; Obesity; OsteoarthritisBiochemistry03 medical and health sciences0302 clinical medicineOsteoarthritismedicineAnimalsHumansMusculoskeletal DiseasesObesityModern dietIntensive care medicineMolecular BiologySocieties MedicalInflammationbiologybusiness.industrymedicine.diseasebiology.organism_classificationObesityInflammagingDysbiosiInflammaging ObesityGastrointestinal MicrobiomeEurope030104 developmental biologyNeurologyOsteoporosisDysbiosisObservational studyOsteoarthritiMetabolic syndromebusinessDysbiosis030217 neurology & neurosurgeryBiotechnology
researchProduct

Birth Mode-Related Differences in Gut Microbiota Colonization and Immune System Development.

2018

<b><i>Background:</i></b> The process of early gut colonization is extremely variable among individuals and is influenced by numerous factors. Among these, the mode of birth will strongly shape the early microbial exposure and immune environment of the neonate. <b><i>Summary:</i></b> Here, I review how the concomitant processes of microbiota and immune system development are altered by C-section delivery and the effects of such alterations on long-term health. <b><i>Key messages:</i></b> C-section delivery impinges on microbiota and immune system development through various means: (i) if labor is lacking, intrauterine i…

0301 basic medicineAllergyMedicine (miscellaneous)DiseaseBiologyGut flora03 medical and health sciencesFecesImmune systemTime windowsPregnancymedicineHumansColonizationGut colonizationNutrition and DieteticsCesarean SectionInfant Newbornbiochemical phenomena metabolism and nutritionmedicine.diseasebiology.organism_classificationDelivery ObstetricGastrointestinal Microbiome030104 developmental biologyImmune SystemImmunologyVaginabacteriaFemaleAnnals of nutritionmetabolism
researchProduct

Subclinical gut inflammation in ankylosing spondylitis

2015

Purpose of review Subclinical gut inflammation has been described in a significant proportion of patients with ankylosing spondylitis (AS), up to 10% of them developing it during the time of clinically overt inflammatory bowel disease. Histologic, immunologic, and intestinal microbiota alterations characterize the AS gut. Recent findings Microbial dysbiosis as well as alterations of innate immune responses have been demonstrated in the gut of AS. Furthermore, a growing body of evidence suggests that the gut of AS patients may be actively involved in the pathogenesis of AS through the production of proinflammatory cytokines, such as IL-23p19, and the differentiation of potentially pathogenic…

0301 basic medicineAnkylosing spondylitis; Gut inflammation; Innate lymphoid cells; Interleukin-17; Interleukin-23; Adaptive Immunity; Animals; Cytokines; Disease Models Animal; Dysbiosis; Gastrointestinal Microbiome; Humans; Immunity Innate; Inflammation; Inflammatory Bowel Diseases; Intestines; Macrophages; Mice; Spondylitis Ankylosing; Rheumatology; Medicine (all)MacrophageAdaptive ImmunityInterleukin-23Inflammatory bowel diseaseGastroenterologyMiceInterleukin 23InnateMedicineSubclinical infectionMedicine (all)Interleukin-17digestive oral and skin physiologyInnate lymphoid cellIntestineIntestinesCytokinesmedicine.symptomHumanAnkylosingmedicine.medical_specialtyDisease ModelInflammationdigestive system03 medical and health sciencesRheumatologyInternal medicineInnate lymphoid cellAnimalsHumansSpondylitis AnkylosingCytokineSpondylitisGut inflammationSpondylitiInflammationAnkylosing spondylitisAnimalbusiness.industryMacrophagesInflammatory Bowel DiseaseImmunityInflammatory Bowel Diseasesmedicine.diseaseImmunity InnateDysbiosiGastrointestinal MicrobiomeAnkylosing spondylitiDisease Models Animal030104 developmental biologyDysbiosisbusinessDysbiosisCurrent Opinion in Rheumatology
researchProduct

Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism

2020

Immunological and metabolic processes are inextricably linked and important for maintaining tissue and organismal health. Manipulation of cellular metabolism could be beneficial to immunity and prevent metabolic and degenerative diseases including obesity, diabetes, and cancer. Maintenance of a normal metabolism depends on symbiotic consortium of gut microbes. Gut microbiota contributes to certain xenobiotic metabolisms and bioactive metabolites production. Gut microbiota-derived metabolites have been shown to be involved in inflammatory activation of macrophages and contribute to metabolic diseases. Recent studies have focused on how nutrients affect immunometabolism. Polyphenols, the seco…

0301 basic medicineAntioxidantmedicine.medical_treatmentAnti-Inflammatory Agentslcsh:TX341-641InflammationReviewGut florametabolic diseasesdigestive systemAntioxidants03 medical and health scienceschemistry.chemical_compound0302 clinical medicineImmunitymedicineHumansSymbiosismetabolitesInflammationNutrition and DieteticsCellular metabolismHost Microbial Interactionsgut microbiotabiologyHost (biology)MacrophagesPolyphenolsfood and beveragesbiology.organism_classificationGastrointestinal Microbiomepolyphenol030104 developmental biologyBiochemistrychemistryPolyphenol030220 oncology & carcinogenesisChronic DiseaseDietary Supplementsmedicine.symptomXenobioticlcsh:Nutrition. Foods and food supplyFood ScienceNutrients
researchProduct

Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2.

2016

The symbiotic gut microbiota play pivotal roles in host physiology and the development of cardiovascular diseases, but the microbiota-triggered pattern recognition signaling mechanisms that impact thrombosis are poorly defined. In this article, we show that germ-free (GF) and Toll-like receptor-2 (Tlr2)-deficient mice have reduced thrombus growth after carotid artery injury relative to conventionally raised controls. GF Tlr2-/- and wild-type (WT) mice were indistinguishable, but colonization with microbiota restored a significant difference in thrombus growth between the genotypes. We identify reduced plasma levels of von Willebrand factor (VWF) and reduced VWF synthesis, specifically in he…

0301 basic medicineBlood Plateletsmedicine.medical_specialtyEndotheliumPlatelet AggregationImmunologyBiologyBiochemistry03 medical and health sciencesMiceVon Willebrand factorhemic and lymphatic diseasesInternal medicinevon Willebrand FactormedicineAnimalsGerm-Free LifePlateletThrombusIntegrin bindingMice KnockoutToll-like receptorThrombosisCell BiologyHematologymedicine.diseaseToll-Like Receptor 2Gastrointestinal MicrobiomeTLR2030104 developmental biologymedicine.anatomical_structureEndocrinologyLivercardiovascular systembiology.proteinSignal transductioncirculatory and respiratory physiologySignal TransductionBlood
researchProduct

Gut Microbiota Condition the Therapeutic Efficacy of Trastuzumab in HER2-Positive Breast Cancer.

2021

Abstract Emerging evidence indicates that gut microbiota affect the response to anticancer therapies by modulating the host immune system. In this study, we investigated the impact of gut microbiota on immune-mediated trastuzumab antitumor efficacy in preclinical models of HER2-positive breast cancer and in 24 patients with primary HER2-positive breast cancer undergoing trastuzumab-containing neoadjuvant treatment. In mice, the antitumor activity of trastuzumab was impaired by antibiotic administration or fecal microbiota transplantation from antibiotic-treated donors. Modulation of the intestinal microbiota was reflected in tumors by impaired recruitment of CD4+ T cells and granzyme B–posi…

0301 basic medicineCD4-Positive T-LymphocytesCancer ResearchReceptor ErbB-2medicine.medical_treatmentGut floraGranzymesMice0302 clinical medicineAntineoplastic Agents ImmunologicalTrastuzumabTumor Microenvironmentskin and connective tissue diseasesNeoadjuvant therapybiologyFecal Microbiota TransplantationInterleukin-12Neoadjuvant TherapyAnti-Bacterial AgentsTreatment OutcomeOncology030220 oncology & carcinogenesisStreptomycinCytokinesGut microbiota trastuzumab breast cancerFemaleTaxoidsmedicine.drugBridged-Ring CompoundsBreast NeoplasmsSettore MED/08 - Anatomia PatologicaNitric Oxide03 medical and health sciencesImmune systemBreast cancerVancomycinmedicineAnimalsHumansCyclophosphamideImmunity Mucosalbusiness.industryLachnospiraceaeDendritic cellDendritic CellsTrastuzumabbiology.organism_classificationmedicine.diseaseGastrointestinal Microbiome030104 developmental biologyGranzymeDoxorubicinImmune Systembiology.proteinCancer researchInterferonsbusinessCancer research
researchProduct

Mast cells crosstalk with B cells in the gut and sustain IgA response in the inflamed intestine.

2021

B lymphocytes are among the cell types whose effector functions are modulated by mast cells (MCs). The B/MC crosstalk emerged in several pathological settings, notably the colon of inflammatory bowel disease (IBD) patients is a privileged site in which MCs and IgA+ cells physically interact. Herein, by inducing conditional depletion of MCs in red MC and basophil (RMB) mice, we show that MCs control B cell distribution in the gut and IgA serum levels. Moreover, in dextran sulfate sodium (DSS)-treated RMB mice, the presence of MCs is fundamental for the enlargement of the IgA+ population in the bowel and the increase of systemic IgA production. Since both conventional B-2 and peritoneal-deriv…

0301 basic medicineCell typeColon[SDV]Life Sciences [q-bio]ImmunologyPopulationInflammationBasophilBiologySettore MED/08 - Anatomia Patologicabehavioral disciplines and activitiesInflammatory bowel diseasecell-to-cell interplay colitis IgAinnate-like B cells mast cells03 medical and health sciencesMice0302 clinical medicinemedicineImmunology and AllergyAnimalsMast CellsColitisIntestinal MucosaeducationB cellComputingMilieux_MISCELLANEOUSInflammationeducation.field_of_studyB-LymphocytesTumor Necrosis Factor-alphaDextran Sulfatemedicine.diseaseColitisInflammatory Bowel DiseaseshumanitiesInnate-like B cellsGastrointestinal MicrobiomeImmunoglobulin AMice Inbred C57BLCrosstalk (biology)030104 developmental biologymedicine.anatomical_structureCell-to-cell interplayCell-to-cell interplay; Colitis; IgA; Innate-like B cells; Mast cellsImmunologymedicine.symptomIgA030215 immunologyEuropean journal of immunologyReferences
researchProduct

IL-17 controls central nervous system autoimmunity through the intestinal microbiome

2021

Interleukin-17A- (IL-17A) and IL-17F-producing CD4(+) T helper cells (T(H)17 cells) are implicated in the development of chronic inflammatory diseases, such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). T-H 17 cells also orchestrate leukocyte invasion of the central nervous system (CNS) and subsequent tissue damage. However, the role of IL-17A and IL-17F as effector cytokines is still confused with the encephalitogenic function of the cells that produce these cytokines, namely, T-H 17 cells, fueling a long-standing debate in the neuroimmunology field. Here, we demonstrated that mice deficient for IL-17A/F lose their susceptibility to EAE, which…

0301 basic medicineCentral Nervous SystemMaleEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisreceptorImmunologyCentral nervous system610 Medicine & healthGut flora10263 Institute of Experimental Immunologymedicine.disease_causeAutoimmunityinterleukin-1703 medical and health sciencesMice0302 clinical medicinemedicinecytokineAnimalsHumanscnst-cellsMice Knockout2403 Immunologybiologygut microbiotaMultiple sclerosisExperimental autoimmune encephalomyelitisGeneral MedicineFecal Microbiota Transplantationneutralizationmedicine.diseasebiology.organism_classificationAdoptive Transfer3. Good healthGut EpitheliumGastrointestinal Microbiome030104 developmental biologyNeuroimmunologymedicine.anatomical_structureImmunology2723 Immunology and Allergy570 Life sciences; biologyTh17 CellssequencesFemaleInterleukin 17030217 neurology & neurosurgery
researchProduct

The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols

2019

Polyphenols are secondary metabolites of plants that have been widely studied for their health benefits as antioxidants. In the last decade, several clinical trials and epidemiological studies have shown that long-term consumption of polyphenol-rich diet protects against chronic diseases such as cancers and cardiovascular diseases. Current cardiovascular studies have also suggested an important role of gut microbiota and circadian rhythm in the pathogenesis metabolic and cardiovascular diseases. It is known that polyphenols can modulate the composition of core gut microbiota and interact with circadian clocks. In this article, we summarize recent findings, review the molecular mechanisms an…

0301 basic medicineCircadian clock610 MedizinReview ArticleGut floraHealth benefitsBioinformaticsThemed Section: Review Articles03 medical and health sciences0302 clinical medicineNutraceutical610 Medical sciencesMedicineCircadian rhythmPharmacologybiologybusiness.industryPolyphenolsfood and beveragesbiology.organism_classificationCircadian RhythmDietGastrointestinal Microbiome030104 developmental biologyPolyphenolDietary Supplementsbusiness030217 neurology & neurosurgeryBritish Journal of Pharmacology
researchProduct

Gut microbiota imbalance and colorectal cancer

2016

International audience; The gut microbiota acts as a real organ. The symbiotic interactions between resident micro-organisms and the digestive tract highly contribute to maintain the gut homeostasis. However, alterations to the microbiome caused by environmental changes (e.g., infection, diet and/or lifestyle) can disturb this symbiotic relationship and promote disease, such as inflammatory bowel diseases and cancer. Colorectal cancer is a complex association of tumoral cells, non-neoplastic cells and a large amount of micro-organisms, and the involvement of the microbiota in colorectal carcinogenesis is becoming increasingly clear. Indeed, many changes in the bacterial composition of the g…

0301 basic medicineColorectal cancer[SDV]Life Sciences [q-bio]enterotoxigenic bacteroides-fragilisGut floraCyclomodulin[ SDV.CAN ] Life Sciences [q-bio]/CancerTopic Highlightstreptococcus-gallolyticus infectionbiologyGastrointestinal MicrobiomeGastroenterologyGeneral Medicinecytolethal-distending toxin3. Good healthlactobacillus-acidophilus deficientIntestinesCell Transformation NeoplasticHost-Pathogen InteractionsInflammation MediatorsColorectal NeoplasmsVirulence Factorspolymerase-chain-reaction[SDV.CAN]Life Sciences [q-bio]/CancerGut microbiotaoxidative dna-damageMicrobiologyescherichia-coli strains03 medical and health scienceshelicobacter-pylori infectionmedicineAnimalsHumansMicrobiomeBacteria[ SDV ] Life Sciences [q-bio]inflammatory-bowel-diseaseCancerHelicobacter pyloribiology.organism_classificationmedicine.diseaseStreptococcus bovisColorectal cancerGastrointestinal MicrobiomeHépatologie et Gastroentérologie030104 developmental biologytoll-like receptorsOxidative stressImmunologyHépatology and GastroenterologyDysbiosiscolorectal cancer;gut microbiota;dysbiosis;cyclomodulin;oxidative;stress;enterotoxigenic bacteroides-fragilis;oxidative dna-damage;cytolethal-distending toxin;inflammatory-bowel-disease;streptococcus-gallolyticus infection;lactobacillus-acidophilus;deficient;helicobacter-pylori infection;polymerase-chain-reaction;escherichia-coli strains;toll-like receptorsDysbiosisDNA Damage
researchProduct