Search results for "Intrinsic"

showing 10 items of 386 documents

Some fixed point results via R-functions

2016

We establish existence and uniqueness of fixed points for a new class of mappings, by using R-functions and lower semi-continuous functions in the setting of metric spaces. As consequences of this results, we obtain several known fixed point results, in metric and partial metric spaces. An example is given to support the new theory. A homotopy result for operators on a set endowed with a metric is given as application.

Discrete mathematicsInjective metric spaceApplied Mathematics010102 general mathematics01 natural sciencesConvex metric spaceIntrinsic metric010101 applied mathematicsMetric spaceMetric (mathematics)Metric mapGeometry and Topology0101 mathematicsMetric differentialFisher information metricMathematicsFixed Point Theory and Applications
researchProduct

Common fixed points for self-mappings on partial metric spaces

2012

Abstract In this paper, we prove some results of a common fixed point for two self-mappings on partial metric spaces. Our results generalize some interesting results of Ilić et al. (Appl. Math. Lett. 24:1326-1330, 2011). We conclude with a result of the existence of a fixed point for set-valued mappings in the context of 0-complete partial metric spaces. MSC:54H25, 47H10.

Discrete mathematicsInjective metric spaceApplied Mathematics010102 general mathematicsEquivalence of metricscommon fixed point01 natural sciencesConvex metric spaceIntrinsic metric010101 applied mathematicsMetric spacepoints of coincidence0-complete partial metric spaceSettore MAT/05 - Analisi Matematicaψ-contractions.Metric (mathematics)Metric mapGeometry and Topology0101 mathematicsCoincidence pointMathematicsFixed Point Theory and Applications
researchProduct

Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces

2014

Abstract Let X be a non-empty set. We say that an element x ∈ X is a φ-fixed point of T, where φ : X → [ 0 , ∞ ) and T : X → X , if x is a fixed point of T and φ ( x ) = 0 . In this paper, we establish some existence results of φ-fixed points for various classes of operators in the case, where X is endowed with a metric d. The obtained results are used to deduce some fixed point theorems in the case where X is endowed with a partial metric p. MSC:54H25, 47H10.

Discrete mathematicsInjective metric spaceApplied Mathematicsmetric spacepartial metric spaceFixed-point theoremFixed pointFixed-point propertyIntrinsic metricConvex metric spaceIsolated pointMetric spacefixed pointSettore MAT/05 - Analisi MatematicaDiscrete Mathematics and Combinatorics$\varphi$-fixed pointAnalysisMathematicsJournal of Inequalities and Applications
researchProduct

On a pair of fuzzy $\varphi$-contractive mappings

2010

We establish common fixed point theorems for fuzzy mappings under a $\varphi$-contraction condition on a metric space with the d_$\infty$-metric (induced by the Hausdorff metric) on the family of fuzzy sets. The study of fixed points of fuzzy set-valued mappings related to the d_$\infty$-metric is useful in geometric problems arising in high energy physics. Our results generalize some recent results.

Discrete mathematicsInjective metric spaceFuzzy mappingT-normFuzzy subalgebraFixed pointCommon fixed pointComputer Science ApplicationsConvex metric spaceIntrinsic metricHausdorff distanceContractive type mappingSettore MAT/05 - Analisi MatematicaModeling and SimulationFuzzy numberCoincidence pointMathematics
researchProduct

A Structural Theorem for Metric Space Valued Mappings of Φ-bounded Variation

2009

In this paper we introduce the notion of $\Phi$-bounded variation for metric space valued mappings defined on a subset of the real line. Such a notion generalizes the one for real functions introduced by M. Schramm, and many previous generalized variations. We prove a structural theorem for mappings of $\Phi$-bounded variation. As an application we show that each mapping of $\Phi$-bounded variation defined on a subset of $\mathbb{R}$ possesses a $\Phi$-variation preserving extension to the whole real line.

Discrete mathematicsInjective metric spaceextensionstructural theoremTotally bounded space54C35$\Phi$-bounded variation54E35Intrinsic metricmetric space valued mapings variation $Phi$-variation extension structural theorem.metric space valued mappingsUniform normSettore MAT/05 - Analisi MatematicaBounded functionBounded variationGeometry and Topologyvariation26A45Metric differentialReal lineAnalysisMathematics
researchProduct

Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results

2014

Abstract We give some fixed point theorems in the setting of metric spaces or partial metric spaces endowed with a finite number of graphs. The presented results extend and improve several well-known results in the literature. In particular, we discuss a Caristi type fixed point theorem in the setting of partial metric spaces, which has a close relation to Ekelandʼs principle.

Discrete mathematicsMetric spaceUniform continuityInjective metric spaceCaristi's fixed point theorem Ekeland's principle graph metric space partial metric space.Metric mapMetric treeGeometry and TopologyEquivalence of metricsSettore MAT/03 - GeometriaConvex metric spaceMathematicsIntrinsic metric
researchProduct

Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces

2012

Abstract In this paper, we introduce the concept of a partial Hausdorff metric. We initiate study of fixed point theory for multi-valued mappings on partial metric space using the partial Hausdorff metric and prove an analogous to the well-known Nadlerʼs fixed point theorem. Moreover, we give a homotopy result as application of our main result.

Discrete mathematicsNadlerʼs fixed point theoremPure mathematicsInjective metric spacePartial Hausdorff metricMulti-valued mappingsNadler’s fixed point theoremMulti-valued mappingConvex metric spaceIntrinsic metricMetric spaceHausdorff distanceSettore MAT/05 - Analisi MatematicaHausdorff dimensionHausdorff measureGeometry and TopologyMetric differentialMathematics
researchProduct

Fixed points and completeness on partial metric spaces

2015

Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. Paesano and Vetro [D. Paesano and P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911-920] proved an analogous fixed point result for a selfmapping on a partial metric space that characterizes the partial metric 0-completeness. In this paper we prove a fixed point result for a new class of…

Discrete mathematicsNumerical AnalysisPartial metric 0-completeneControl and OptimizationAlgebra and Number TheoryPartial metric spaceInjective metric spaceOrdered partial metric spaceEquivalence of metricsConvex metric spaceIntrinsic metricMetric spaceSettore MAT/05 - Analisi MatematicaSuzuki fixed point theoremCompleteness (order theory)Metric (mathematics)Discrete Mathematics and CombinatoricsMetric mapFixed and common fixed pointAnalysisMathematicsMiskolc Mathematical Notes
researchProduct

Berinde mappings in orbitally complete metric spaces

2011

Abstract We give a fixed point theorem for a self-mapping satisfying a general contractive condition of integral type in orbitally complete metric spaces. Some examples are given to illustrate our obtained result.

Discrete mathematicsOrbitally complete metric space.General MathematicsApplied MathematicsInjective metric spaceGeneral Physics and AstronomyFixed-point theoremStatistical and Nonlinear PhysicsFixed pointGeneral contractive conditionIntrinsic metricConvex metric spaceMetric spaceFréchet spaceSettore MAT/05 - Analisi MatematicaMetric (mathematics)Metric differentialMathematics
researchProduct

Common fixed points of generalized contractions on partial metric spaces and an application

2011

Abstract In this paper, common fixed point theorems for four mappings satisfying a generalized nonlinear contraction type condition on partial metric spaces are proved. Presented theorems extend the very recent results of I. Altun, F. Sola and H. Simsek [Generalized contractions on partial metric spaces, Topology and its applications 157 (18) (2010) 2778–2785]. As application, some homotopy results for operators on a set endowed with a partial metric are given.

Discrete mathematicsPartial metric spaceHomotopy.Applied MathematicsInjective metric space010102 general mathematicsEquivalence of metricsCommon fixed point01 natural sciencesCoincidence pointConvex metric spaceIntrinsic metric010101 applied mathematicsComputational MathematicsMetric spaceSettore MAT/05 - Analisi MatematicaMetric (mathematics)Metric mapWeakly compatible pair of mapping0101 mathematicsMetric differentialMathematicsApplied Mathematics and Computation
researchProduct