Search results for "Intrusion detection system"
showing 10 items of 51 documents
Intrusion Detection System Test Framework for SCADA Systems
2018
Robust Network Agreement on Logical Information
2011
Abstract Logical consensus is an approach to distributed decision making which is based on the availability of a network of agents with incomplete system knowledge. The method requires the construction of a Boolean map which defines a dynamic system allowing the entire network to consent on a unique, global decision. Previous work by the authors proved the method to be viable for applications such as intrusion detection within a structured environment, when the agent's communication topology is known in advance. The current work aims at providing a fully distributed protocol, requiring no a priori knowledge of each agent's communication neighbors. The protocol allows the construction of a r…
Edge Computing-enabled Intrusion Detection for C-V2X Networks using Federated Learning
2022
Intrusion detection systems (IDS) have already demonstrated their effectiveness in detecting various attacks in cellular vehicle-to-everything (C-V2X) networks, especially when using machine learning (ML) techniques. However, it has been shown that generating ML-based models in a centralized way consumes a massive quantity of network resources, such as CPU/memory and bandwidth, which may represent a critical issue in such networks. To avoid this problem, the new concept of Federated Learning (FL) emerged to build ML-based models in a distributed and collaborative way. In such an approach, the set of nodes, e.g., vehicles or gNodeB, collaborate to create a global ML model trained across thes…
A Hierarchical Detection and Response System to Enhance Security Against Lethal Cyber-Attacks in UAV Networks
2018
International audience; Unmanned aerial vehicles (UAVs) networks have not yet received considerable research attention. Specifically, security issues are a major concern because such networks, which carry vital information, are prone to various attacks. In this paper, we design and implement a novel intrusion detection and response scheme, which operates at the UAV and ground station levels, to detect malicious anomalies that threaten the network. In this scheme, a set of detection and response techniques are proposed to monitor the UAV behaviors and categorize them into the appropriate list (normal, abnormal, suspect, and malicious) according to the detected cyber-attack. We focus on the m…
Artificial Intelligence for Cybersecurity: A Systematic Mapping of Literature
2020
Due to the ever-increasing complexities in cybercrimes, there is the need for cybersecurity methods to be more robust and intelligent. This will make defense mechanisms to be capable of making real-time decisions that can effectively respond to sophisticated attacks. To support this, both researchers and practitioners need to be familiar with current methods of ensuring cybersecurity (CyberSec). In particular, the use of artificial intelligence for combating cybercrimes. However, there is lack of summaries on artificial intelligent methods for combating cybercrimes. To address this knowledge gap, this study sampled 131 articles from two main scholarly databases (ACM digital library and IEEE…
Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation
2019
Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…
Intrusion Detection with Interpretable Rules Generated Using the Tsetlin Machine
2020
The rapid deployment in information and communication technologies and internet-based services have made anomaly based network intrusion detection ever so important for safeguarding systems from novel attack vectors. To this date, various machine learning mechanisms have been considered to build intrusion detection systems. However, achieving an acceptable level of classification accuracy while preserving the interpretability of the classification has always been a challenge. In this paper, we propose an efficient anomaly based intrusion detection mechanism based on the Tsetlin Machine (TM). We have evaluated the proposed mechanism over the Knowledge Discovery and Data Mining 1999 (KDD’99) …
Using continuous user authentication to detect masqueraders
2003
Nowadays computer and network intrusions have become more common and more complicated, challenging the intrusion detection systems. Also, network traffic has been constantly increasing. As a consequence, the amount of data to be processed by an intrusion detection system has been growing, making it difficult to efficiently detect intrusions online. Proposes an approach for continuous user authentication based on the user’s behaviour, aiming at development of an efficient and portable anomaly intrusion detection system. A prototype of a host‐based intrusion detection system was built. It detects masqueraders by comparing the current user behaviour with his/her stored behavioural model. The m…
A Methodology to Detect Temporal Regularities in User Behavior for Anomaly Detection
2001
Network security, and intrusion detection in particular, represents an area of increased in security community over last several years. However, the majority of work in this area has been concentrated upon implementation of misuse detection systems for intrusion patterns monitoring among network traffic. In anomaly detection the classification was mainly based on statistical or sequential analysis of data often neglect ion temporal events' information as well as existing relations between them. In this paper we consider an anomaly detection problem as one of classification of user behavior in terms of incoming multiple discrete sequences. We present and approach that allows creating and mai…
Using Cloud Computing to Implement a Security Overlay Network
2012
This article proposes and analyzes a general cloud-based security overlay network that can be used as a transparent overlay network to provide services such as intrusion detection systems, antivirus and antispam software, and distributed denial-of-service prevention. The authors analyze each of these in-cloud security services in terms of resiliency, effectiveness, performance, flexibility, control, and cost.