Search results for "Inuit"
showing 10 items of 490 documents
The multiple slope discontinuity beam element for nonlinear analysis of RC framed structures
2018
The seismic nonlinear response of reinforced concrete structures permits to identify critical zones of an existing structure and to better plan its rehabilitation process. It is obtained by performing finite element analysis using numerical models classifiable into two categories: lumped plasticity models and distributed plasticity models. The present work is devoted to the implementation, in a finite element environment, of an elastoplastic Euler–Bernoulli beam element showing possible slope discontinuities at any position along the beam span, in the framework of a modified lumped plasticity. The differential equation of an Euler–Bernoulli beam element under static loads in presence of mul…
Remarks on G-Metric Spaces
2013
In 2005, Mustafa and Sims (2006) introduced and studied a new class of generalized metric spaces, which are called G-metric spaces, as a generalization of metric spaces. We establish some useful propositions to show that many fixed point theorems on (nonsymmetric) G-metric spaces given recently by many authors follow directly from well-known theorems on metric spaces. Our technique can be easily extended to other results as shown in application.
Le qualifiche dei dichiaranti:anomalie del modello italiano e spunti comparatistici.
2011
La chiamata in correità è un istituto processuale che si confronta storicamente con un atteggiamento ambivalente, caratterizzato dallo scettiscismo da un lato e dalla fiducia verso il contributo dei dichiarante, dall'altro. Le premesse storiche vengono utilizzate per mettere in luce i nodi più attuali del dibattito interpretativo.
Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity
2011
In this article, we study the asymptotic behaviour of solutions of a first-order stochastic lattice dynamical system with an additive noise. We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth and dissipative conditions so that uniqueness of the Cauchy problem fails to be true. Using the theory of multi-valued random dynamical systems, we prove the existence of a random compact global attractor.
An alternative representation of Altham's multiplicative-binomial distribution
1998
Abstract Cox (1972) introduced a log-linear representation for the joint distribution of n binary-dependent responses. Altham (1978) derived the distribution of the sum of such responses, under a multiplicative, rather than log-linear, representation and called it multiplicative-binomial. We propose here an alternative form of the multiplicative-binomial, which is derived from the original Cox's representation and is characterized by intuitively meaningful parameters, and compare its first two moments with those of the standard binomial distribution.
Deformation history during chain building deduced by outcrop structural analysis: The case of the Sicilian fold-and-thrust belt (Central Mediterranea…
2015
Abstract The Sicilian fold-and-thrust belt is located in the central Mediterranean area, and it represents the south-eastern arcuate segment of the Apennine-Maghrebide orogen. The tectonic evolution of the Sicilian belt is documented after outcrop analysis of small-scale structural features carried out throughout the region. Results are consistent with the following four main deformation stages having affected the study area, from the oldest to the youngest: (i) multilayer weakening; (ii) folding-and-thrusting, (iii) extension, and (iv) renewed thrusting. The first deformation stage included three different substages (layer-parallel shortening, bed-parallel simple shear and fold nucleation)…
Uniqueness of diffusion on domains with rough boundaries
2016
Let $\Omega$ be a domain in $\mathbf R^d$ and $h(\varphi)=\sum^d_{k,l=1}(\partial_k\varphi, c_{kl}\partial_l\varphi)$ a quadratic form on $L_2(\Omega)$ with domain $C_c^\infty(\Omega)$ where the $c_{kl}$ are real symmetric $L_\infty(\Omega)$-functions with $C(x)=(c_{kl}(x))>0$ for almost all $x\in \Omega$. Further assume there are $a, \delta>0$ such that $a^{-1}d_\Gamma^{\delta}\,I\le C\le a\,d_\Gamma^{\delta}\,I$ for $d_\Gamma\le 1$ where $d_\Gamma$ is the Euclidean distance to the boundary $\Gamma$ of $\Omega$. We assume that $\Gamma$ is Ahlfors $s$-regular and if $s$, the Hausdorff dimension of $\Gamma$, is larger or equal to $d-1$ we also assume a mild uniformity property for $\Omega$ i…
On the regularity of very weak solutions for linear elliptic equations in divergence form
2020
AbstractIn this paper we consider a linear elliptic equation in divergence form $$\begin{aligned} \sum _{i,j}D_j(a_{ij}(x)D_i u )=0 \quad \hbox {in } \Omega . \end{aligned}$$ ∑ i , j D j ( a ij ( x ) D i u ) = 0 in Ω . Assuming the coefficients $$a_{ij}$$ a ij in $$W^{1,n}(\Omega )$$ W 1 , n ( Ω ) with a modulus of continuity satisfying a certain Dini-type continuity condition, we prove that any very weak solution $$u\in L^{n'}_\mathrm{loc}(\Omega )$$ u ∈ L loc n ′ ( Ω ) of (0.1) is actually a weak solution in $$W^{1,2}_\mathrm{loc}(\Omega )$$ W loc 1 , 2 ( Ω ) .
Generalized countable iterated function systems
2011
One of the most common and most general way to generate fractals is by using iterated function systems which consists of a finite or infinitely many maps. Generalized countable iterated function systems (GCIFS) are a generalization of countable iterated function systems by considering contractions from X ? X into X instead of contractions on the metric space X to itself, where (X, d) is a compact metric space. If all contractions of a GCIFS are Lipschitz with respect to a parameter and the supremum of the Lipschitz constants is finite, then the associated attractor depends continuously on the respective parameter.
Cheeger-harmonic functions in metric measure spaces revisited
2014
Abstract Let ( X , d , μ ) be a complete metric measure space, with μ a locally doubling measure, that supports a local weak L 2 -Poincare inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on ( X , d , μ ) . Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.