6533b7d5fe1ef96bd126494b

RESEARCH PRODUCT

On the regularity of very weak solutions for linear elliptic equations in divergence form

Roberta SchiattarellaDomenico Angelo La MannaChiara Leone

subject

osittaisdifferentiaaliyhtälötPure mathematicsvery weak solutionsApplied MathematicsWeak solution010102 general mathematicselliptic equations01 natural sciencesOmegaModulus of continuity010101 applied mathematicsElliptic curve0101 mathematicsDivergence (statistics)AnalysisMathematics

description

AbstractIn this paper we consider a linear elliptic equation in divergence form $$\begin{aligned} \sum _{i,j}D_j(a_{ij}(x)D_i u )=0 \quad \hbox {in } \Omega . \end{aligned}$$ ∑ i , j D j ( a ij ( x ) D i u ) = 0 in Ω . Assuming the coefficients $$a_{ij}$$ a ij in $$W^{1,n}(\Omega )$$ W 1 , n ( Ω ) with a modulus of continuity satisfying a certain Dini-type continuity condition, we prove that any very weak solution $$u\in L^{n'}_\mathrm{loc}(\Omega )$$ u ∈ L loc n ′ ( Ω ) of (0.1) is actually a weak solution in $$W^{1,2}_\mathrm{loc}(\Omega )$$ W loc 1 , 2 ( Ω ) .

10.1007/s00030-020-00646-8http://hdl.handle.net/11588/812092