0000000000263856
AUTHOR
Roberta Schiattarella
On the regularity of very weak solutions for linear elliptic equations in divergence form
AbstractIn this paper we consider a linear elliptic equation in divergence form $$\begin{aligned} \sum _{i,j}D_j(a_{ij}(x)D_i u )=0 \quad \hbox {in } \Omega . \end{aligned}$$ ∑ i , j D j ( a ij ( x ) D i u ) = 0 in Ω . Assuming the coefficients $$a_{ij}$$ a ij in $$W^{1,n}(\Omega )$$ W 1 , n ( Ω ) with a modulus of continuity satisfying a certain Dini-type continuity condition, we prove that any very weak solution $$u\in L^{n'}_\mathrm{loc}(\Omega )$$ u ∈ L loc n ′ ( Ω ) of (0.1) is actually a weak solution in $$W^{1,2}_\mathrm{loc}(\Omega )$$ W loc 1 , 2 ( Ω ) .
Anisotropic Sobolev homeomorphisms
Let › ‰ R 2 be a domain. Suppose that f 2 W 1;1 loc (›;R 2 ) is a homeomorphism. Then the components x(w), y(w) of the inverse f i1 = (x;y): › 0 ! › have total variations given by jryj(› 0 ) = › fl fl @f fl fl dz; jrxj(› 0 ) = › fl fl @f @y fl fl dz: