Search results for "Ionization Energy"
showing 10 items of 83 documents
Untersuchungen von polymeren im massenspektrometer, 5. Fragmentierungsreaktionen oligomerer oxy- und thio-1,4-phenylene
1975
Als Modellverbindungen zur Differenzierung von thermischen und elektronenstosinduzierten Abbaureaktionen von entsprechenden Polymeren im Massenspektrometer wurden die Fragmentierungsreaktionen oligomerer 1,4-Phenylene mit Sauerstoff-, Schwefel- und Disulfidbrucken sowie eine Reihe alternierender Co-oligomersysteme untersucht. Bei verringerter Ionisationsenergie (15 eV) treten in den Massenspektren aller unzersetzt fluchtigen Oligomeren die Molekulionen als intensivste Peaks auf, so das–bei strukturell gleichen Polymeren–eine eindeutige Identifizierung von thermischen Abbauprodukten erwartet werden kann. In Abhangigkeit von den Bruckenatomen werden charakteristische Unterschiede in den Inten…
Redox potentials and acidity constants from density functional theory based molecular dynamics.
2014
CONSPECTUS: All-atom methods treat solute and solvent at the same level of electronic structure theory and statistical mechanics. All-atom computation of acidity constants (pKa) and redox potentials is still a challenge. In this Account, we review such a method combining density functional theory based molecular dynamics (DFTMD) and free energy perturbation (FEP) methods. The key computational tool is a FEP based method for reversible insertion of a proton or electron in a periodic DFTMD model system. The free energy of insertion (work function) is computed by thermodynamic integration of vertical energy gaps obtained from total energy differences. The problem of the loss of a physical refe…
Levels of self-consistency in the GW approximation
2009
We perform $GW$ calculations on atoms and diatomic molecules at different levels of self-consistency and investigate the effects of self-consistency on total energies, ionization potentials and on particle number conservation. We further propose a partially self-consistent $GW$ scheme in which we keep the correlation part of the self-energy fixed within the self-consistency cycle. This approximation is compared to the fully self-consistent $GW$ results and to the $G W_0$ and the $G_0W_0$ approximations. Total energies, ionization potentials and two-electron removal energies obtained with our partially self-consistent $GW$ approximation are in excellent agreement with fully self-consistent $…
Excited states of the water molecule: Analysis of the valence and Rydberg character
2008
The excited states of the water molecule have been analyzed by using the extended quantum-chemical multistate CASPT2 method, namely, MS-CASPT2, in conjunction with large one-electron basis sets of atomic natural orbital type. The study includes 13 singlet and triplet excited states, both valence and 3s-, 3p-, and 3d-members of the Rydberg series converging to the lowest ionization potential and the 3s- and 3p-Rydberg members converging to the second low-lying state of the cation, 1 math. The research has been focused on the analysis of the valence or Rydberg character of the low-lying states. The computation of the 1 math state of water at different geometries indicates that it has a predom…
Electronic structure of tetraphenyldithiapyranylidene : A valence effective Hamiltonian theoretical investigation
1992
We present a theoretical investigation of the electronic structure of tetraphenyldithiapyranylidene (DIPSΦ4) using the nonempirical valence effective Hamiltonian (VEH) method. Molecular geometries are optimized at the semiempirical PM3 level which predicts an alternating nonaromatic structure for the dithiapyranylidene (DIPS) framework. The VEH one‐electron energy level distribution calculated for DIPSΦ4 is presented as a theoretical XPS simulation and is analyzed by comparison to the electronic structure of its molecular components DIPS and benzene. The theoretical VEH spectrum is found to be fully consistent with the experimental solid‐state x‐ray photoelectron spectroscopy (XPS) spectrum…
Tellurium( II ) Dialkanethiolates: n p (S)‐σ*(Te−S′) Orbital Interactions Determine the 125 Te NMR Chemical Shift, and the Molecular and Crystal Stru…
2003
Tellurium(II) dimethanethiolate, Te(SMe)(2), and tellurium(II) diethanethiolate, Te(SEt)(2), were synthesized by reaction of TeO2 and Te(OiPr)(4) with HSMe and HSEt, respectively. In the solid state, Te(SMe)(2) exhibits a cis-conformation of the methyl groups with respect to the TeS2 plane - an unprecedented situation for nonfunctionalized organotrichalcogenides - whereas Te(SEt)(2) shows a trans-conformation. Ab initio calculations performed for Te(SMe)(2) and Te(SEt)(2) show that the cis- and trans-conformers represent minima on the potential energy surface and are stabilized by intramolecular pi-type n(S)-sigma* (Te-S') orbital interactions. In the solid state, the molecules of each comp…
DFT study of a singleF center in cubic SrTiO3 perovskite
2006
Various properties of a cubic phase of SrTiO3 perovskite containing single F centers (neutral oxygen vacancies), including energies of their formation and migration, were simulated using different formalisms of density functional theory (DFT) as implemented into CRYSTAL-2003 and VASP computer codes. The lattice relaxation around the F center was found to be sensitive to both shape and size of supercells used. The larger the supercell, the closer the defect energy level in the bandgap lies to the conduction band bottom. It approaches the optical ionization energy of 0.49 eV for 270- and 320-atom supercells, where the distance between neighboring defects increases up to four lattice constants…
He-I and He-II excited photoelectron spectra of cyclohepttatrienetricarbonyl complexes of group via metals
1979
Abstract Photoelectron spectra of Group VIA metal complexes M(CO) 3 (η 6 -C 7 H 8 ) have been assigned using experimental criteria along with quantum-mechanical calculations. A general agreement between computed and measured ionization energies has been found for molecular orbitas mainly ligand in character. Similar correlations do not hold for the highest orbitals, mainly metal d based. The energies associated with ionization processes are, in this case, largely dominated by the relaxation terms. The variations of intensities of these bands on changing the energy of ionizing radiation were of crucial significance in the assignment
Charge injection and trapping at perovskite interfaces with organic hole transporting materials of different ionization energies
2019
The extraction of photogenerated holes from CH3NH3PbI3 is crucial in perovskite solar cells. Understanding the main parameters that influence this process is essential to design materials and devices with improved efficiency. A series of vacuum deposited hole transporting materials (HTMs) of different ionization energies, used in efficient photovoltaic devices, are studied here by means of femtosecond transient absorption spectroscopy. We find that ultrafast charge injection from the perovskite into the different HTMs (<100 fs) competes with carrier thermalization and occurs independently of their ionization energy. Our results prove that injection takes place from hot states in the valence…
Relation between molecule ionization energy, film thickness and morphology of two indandione derivatives thin films
2016
Abstract Nowadays most organic devices consist of thin (below 100 nm) layers. Information about the morphology and energy levels of thin films at such thickness is essential for the high efficiency devices. In this work we have investigated thin films of 2-(4-[N,N-dimethylamino]-benzylidene)-indene-1,3-dione (DMABI) and 2-(4-(bis(2-(trityloxy)ethyl)amino)benzylidene)-2H-indene-1,3-dione (DMABI-6Ph). DMABI-6Ph is the same DMABI molecule with attached bulky groups which assist formation of amorphous films from solutions. Polycrystalline structure was obtained for the DMABI thin films prepared by thermal evaporation in vacuum and amorphous structure for the DMABI-6Ph films prepared by spin-coa…