Search results for "Ising model"
showing 10 items of 241 documents
1D antiferromagnetism in spin‐alternating bimetallic chains
1990
The magnetic and thermal properties of the ordered bimetallic chain CoNi(EDTA)⋅6H2O in the very low‐temperature range are reported. The magnetic behavior does not exhibit the characteristic features of 1D ferrimagnets, but a continuous decrease of χmT towards zero at absolute zero. This 1D antiferromagnetic behavior results from an accidental compensation between the moments located at the two sublattices. This behavior, as well as the specific‐heat results, are modeled on the basis of an Ising‐exchange model that considers both alternating spins and Landé factors, and a zero‐field splitting on the Ni site. Eugenio.Coronado@uv.es ; Fernando.Sapina@uv.es
The ferrimagnetic compounds CoM[M’(EDTA)]2⋅4H2O(M,M’=Co,Ni): Magnetic characterization of CoCo[Ni(EDTA)2]⋅4H2O
1990
Under the terms of the Creative Commons Attribution (CC BY) license to their work.
Crystal structure and magnetism of Co(HPO3)⋅H2O : A novel layered compound of Co(II)
1990
Under the terms of the Creative Commons Attribution (CC BY) license to their work.-- et al.
Small clusters with Heisenberg antiferromagnetic exchange
2000
We study small symmetrical clusters of magnetic ions with Heisenberg antiferromagnetic exchange interaction. We calculate the magnetization and the specific heat as functions of applied magnetic field at zero and non-zero temperature. Results are given for both classical and quantum systems. At zero temperature the classical systems undergo a series of transitions where the symmetry changes as a function of applied field. The quantum systems show similar features to Ising systems previously studied.
NMR study of magnetic order, metamagnetic transitions, and low-temperature spin freezing in Ca3Co2O6
2011
We report on a (59)Co NMR investigation of the trigonal cobaltate Ca(3)Co(2)O(6) carried out on a single crystal, providing precise determinations of the electric field gradient and chemical shift tensors, and of the internal magnetic fields at the nonmagnetic Co I sites, unavailable from former studies on powders. The magnetic-field-induced ferri-and ferromagnetic phases at intermediate temperature (e.g., 10 K) are identified by distinct internal fields, well accounted for by purely dipolar interactions. The vanishing transferred hyperfine field at the Co I site indicates that the Co(3+) (I) orbitals do not participate in the intrachain superexchange, in disagreement with a previous theore…
Surface-induced disordering at first-order transitions in body-centered cubic binary alloys: A Monte-Carlo simulation
1990
Surface effects on the phase transition from theDO3 phase to the disordered phase are studied for a bcc Ising antiferromagnet with nearest and next-nearest neighbor exchange interactions in a magnetic field. This model can also be considered to represent binary alloys such as the FeAl-system; missing interactions near the surface translate then into surface magnetic fields. The change of the local magnetization near the surface then corresponds to “surface enrichment” of one component. For a plausible choice of parameters surface-induced disordering is found and the associated critical behavior is studied. Varying the bulk fieldH near the transition fieldHc, we find that the thickness of th…
Non-reversible Monte Carlo simulations of spin models
2011
Abstract Monte Carlo simulations are used to study simple systems where the underlying Markov chain satisfies the necessary condition of global balance but does not obey the more restrictive condition of detailed balance. Here, we show that non-reversible Markov chains can be set up that generate correct stationary distributions, but reduce or eliminate the diffusive motion in phase space typical of the usual Monte Carlo dynamics. Our approach is based on splitting the dynamics into a set of replicas with each replica representing a biased movement in reaction-coordinate space. This introduction of an additional bias in a given replica is compensated for by choosing an appropriate dynamics …
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: A simulation study of the two-dimensional Ising case
2018
Heterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field Hb favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, Hb bcrit, the critical droplet radius is so large that a critical droplet having the contact angle θc required by Young's equation in the region of the chemical inhomogeneity does not yet "fit" there since the base…
An Ising ferromagnet with an antiferromagnetic surface layer: A simple model for magnetic surface reconstruction
1985
Simple cubic Ising lattices are studied by Monte Carlo simulation, using a thin film geometry (usually 40 atomic layers thick), with nearest neighbour ferromagnetic exchange J in the bulk and nearest neighbour antiferromagnetic interaction Js between surface spins. Applying a technique of preferential sampling in the surface layers, we investigate the ordering for a variety of values of JsJ and for various temperatures. For JsAF < Js < − 0.25J (where JsAF ≈ − 2.01J) ferromagnetic ordering occurs at a higher temperature than the antiferromagnetic surface ordering, while for − 0.25J < Js no antiferromagnetic long range order is possible. For Js < JsAF the surface transition occurs at a higher…
Probing predictions due to the nonlocal interface Hamiltonian: Monte Carlo simulations of interfacial fluctuations in Ising films
2019
Extensive Monte Carlo simulations have been performed on an Ising ferromagnet under conditions that would lead to complete wetting in a semi-infinite system. We studied an L×L×D slab geometry with oppositely directed surface fields so that a single interface is formed and can undergo a localization-delocalization transition. Under the chosen conditions the interface position is, on average, in the middle of the slab, and its fluctuations allow a sensitive test of predictions that the effective interactions between the interface and the confining surfaces are nonlocal. The decay of distance dependent correlation functions are measured within the surface, in the middle of the slab, and betwee…