Search results for "JUNCTION"

showing 10 items of 862 documents

2017

Brain microvascular endothelial cells (BMEC) separate the peripheral blood from the brain. These cells, which are surrounded by basal lamina, pericytes and glial cells, are highly interconnected through tight and gap junctions. Their permeability properties restrict the transfer of potentially useful therapeutic agents. In such a hermetic system, the gap junctional exchange of small molecules between cerebral endothelial and non-endothelial cells is crucial for maintaining tissue homeostasis. MicroRNA were shown to cross gap junction channels, thereby modulating gene expression and function of the recipient cell. It was also shown that, when altered, BMEC could be regenerated by endothelial…

0301 basic medicineRegeneration (biology)CellGap junctionBiologyCell biology03 medical and health sciencesCellular and Molecular Neuroscience030104 developmental biologymedicine.anatomical_structureGene expressionmicroRNAcardiovascular systemmedicineBasal laminaInduced pluripotent stem cellMolecular BiologyTissue homeostasisFrontiers in Molecular Neuroscience
researchProduct

Spectrophotometric analysis of crown discoloration following the use of silver nanoparticles combined with calcium hydroxide as intracanal medicament

2017

Background Optimal antibacterial efficacy of intracanal medicaments containing silver nanoparticles (Ag-NPs) has been well documented. However, concerns remain regarding the effect of Ag-NPs on tooth color. This study aimed to assess the effects of calcium hydroxide (CH) mixed with Ag-NPs as intracanal medicaments on tooth color. The effect of location of application of medicament on the degree of discoloration was evaluated as well. Material and Methods Fifty extracted single-rooted, single-canal human teeth with straight roots, no caries, no cracks or fractures were collected and accessed. After cleaning and shaping of the root canals, the teeth were randomly divided into two experimental…

0301 basic medicineRoot canalmedicine.medical_treatmentCemento-enamel junctionDentistryAntibacterial efficacySilver nanoparticleCrown (dentistry)Operative Dentistry and Endodontics03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicineGeneral DentistrySalineCalcium hydroxidebusiness.industryResearch030206 dentistry:CIENCIAS MÉDICAS [UNESCO]030104 developmental biologymedicine.anatomical_structurechemistryUNESCO::CIENCIAS MÉDICASTooth colorbusiness
researchProduct

The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold

2016

Today, chronic respiratory disease is one of the leading causes of mortality globally. Epithelial dysfunction can play a central role in its pathophysiology. The development of physiologically-representative in vitro model systems using tissue-engineered constructs might improve our understanding of epithelial tissue and disease. This study sought to engineer a bilayered collagen-hyaluronate (CHyA-B) scaffold for the development of a physiologically-representative 3D in vitro tracheobronchial epithelial co-culture model. CHyA-B scaffolds were fabricated by integrating a thin film top-layer into a porous sub-layer with lyophilisation. The film layer firmly connected to the sub-layer with del…

0301 basic medicineScaffoldMaterials scienceCellular differentiationBiophysicsBronchiBioengineering02 engineering and technologyEpitheliumCell LineBiomaterials03 medical and health scienceschemistry.chemical_compoundTissue engineeringHyaluronic acidmedicineHumansHyaluronic AcidTissue EngineeringTissue ScaffoldsTight junctionMucinCell DifferentiationEpithelial CellsFibroblasts021001 nanoscience & nanotechnologyCoculture TechniquesEpitheliumCell biologyTrachea030104 developmental biologymedicine.anatomical_structurechemistryMechanics of MaterialsDrug deliveryCeramics and CompositesFeasibility StudiesCollagen0210 nano-technologyBiomedical engineeringBiomaterials
researchProduct

Effect of intermittent shear stress on corneal epithelial cells using an in vitro flow culture model.

2018

Abstract Purpose The aim of this study was to establish and to evaluate an in vitro model for culturing human telomerase-immortalized corneal epithelial (hTCEpi) cells under adjustable medium flow mimicking the movements of the tear film on the ocular surface. Methods Using an IBIDI pump system, cells were cultured under unidirectional, continuous or oscillating, discontinuous medium flow. Cell surface and cytoskeletal architecture were investigated by scanning electron microscopy and immunofluorescence. Gene expression of e-cadherin, occludin, tight junction protein (TJP), desmoplakin, desmocollin and mucins was investigated by real-time PCR. Protein expression of desmoplakin, TJP, occludi…

0301 basic medicineStress fiberTight junctionbiologyBlinkingDesmoplakinChemistryEpithelium CornealMucinsEpithelial CellsOccludinCell junctionModels BiologicalCell biology03 medical and health sciencesOphthalmology030104 developmental biologyCell culturebiology.proteinShear stressHumansStress MechanicalMUC1BiomarkersCells CulturedThe ocular surface
researchProduct

Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight ju…

2016

We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and grow…

0301 basic medicineSus scrofaCell Culture TechniquesCell CommunicationBiologyMatrix metalloproteinaseBlood–brain barrierBiochemistryTight JunctionsCapillary Permeability03 medical and health sciences0302 clinical medicinePEDFIn vivoNeurotrophic factorsCell Line TumormedicineElectric ImpedanceAnimalsHumansNerve Growth FactorsAngiogenic ProteinsNeuronsTight Junction ProteinsTight junctionEndothelial CellsCell BiologyCoculture TechniquesCell biologyVascular endothelial growth factor B030104 developmental biologymedicine.anatomical_structurePhenotypeBlood-Brain BarrierImmunologyNeurovascular CouplingEndostatinCardiology and Cardiovascular Medicine030217 neurology & neurosurgerySignal TransductionMicrovascular research
researchProduct

Acute depletion of telomerase components DKC1 and NOP10 induces oxidative stress and disrupts ribosomal biogenesis via NPM1 and activation of the P53…

2020

Mutations in DKC1, NOP10, and TINF2 genes, coding for proteins in telomerase and shelterin complexes, are responsible for diverse diseases known as telomeropathies and ribosomopathies, including dyskeratosis congenita (DC, ORPHA 1775). These genes contribute to the DC phenotype through mechanisms that are not completely understood. We previously demonstrated in models of DC that oxidative stress is an early and independent event that occurs prior to telomere shortening. To clarify the mechanisms that induce oxidative stress, we silenced genes DKC1, NOP10, and TINF2 with siRNA technology. With RNA array hybridisation, we found several altered pathways for each siRNA model. Afterwards, we ide…

0301 basic medicineTelomeraseTelomere-Binding ProteinsCell Cycle ProteinsShelterin ComplexCell LineAdherens junction03 medical and health sciences0302 clinical medicineRibonucleoproteins Small NucleolarmedicineRNA Small InterferingMolecular BiologyTelomeraseTelomere ShorteningRibonucleoproteinChemistryRNANuclear ProteinsCell BiologyTelomereShelterinmedicine.diseaseCell biologyTelomereOxidative Stress030104 developmental biology030220 oncology & carcinogenesisMutationTumor Suppressor Protein p53NucleophosminRibosomesDyskeratosis congenitaBiogenesisBiochimica et biophysica acta. Molecular cell research
researchProduct

Impact of polymer-modified gold nanoparticles on brain endothelial cells: exclusion of endoplasmic reticulum stress as a potential risk factor

2016

A library of polymer-coated gold nanoparticles (AuNPs) differing in size and surface modifications was examined for uptake and induction of cellular stress responses in the endoplasmic reticulum (ER stress) in human brain endothelial cells (hCMEC/D3). ER stress is known to affect the physiology of endothelial cells (ECs) and may lead to inflammation or apoptosis. Thus, even if applied at non-cytotoxic concentrations ER stress caused by nanoparticles should be prevented to reduce the risk of vascular diseases and negative effects on the integrity of barriers (e.g. blood-brain barrier). We exposed hCMEC/D3 to twelve different AuNPs (three sizes: 18, 35, and 65 nm, each with four surface-modif…

0301 basic medicineXBP1BiPCell SurvivalPolymersBiomedical EngineeringMetal NanoparticlesApoptosis02 engineering and technologyBiologyEndoplasmic ReticulumToxicologyArticleCell LineProinflammatory cytokine03 medical and health sciencescell stressDownregulation and upregulationRisk FactorsHeat shock proteinAnimalsHumansHSP70 Heat-Shock ProteinsParticle SizeHeat-Shock ProteinsATF6Endoplasmic reticulumInterleukin-8ATF4Endothelial CellsMembrane Proteinsunfolded protein responseEndoplasmic Reticulum Stress021001 nanoscience & nanotechnologyQPActivating Transcription Factor 4Cell biology030104 developmental biologyBlood-Brain Barriertight junction proteinsImmunologyUnfolded protein responseGold0210 nano-technologyTranscription Factor CHOPNanotoxicology
researchProduct

LBA-06 IMAB362: a novel immunotherapeutic antibody targeting the tight-junction protein component CLAUDIN18.2 in gastric cancer

2016

0301 basic medicinebiologyTight junctionbusiness.industryCancerHematologymedicine.disease03 medical and health sciences030104 developmental biology0302 clinical medicineOncology030220 oncology & carcinogenesisComponent (UML)Antibody targetingbiology.proteinCancer researchmedicineAntibodybusinessAnnals of Oncology
researchProduct

Nitric Oxide System and Bronchial Epithelium: More Than a Barrier

2021

Airway epithelium forms a physical barrier that protects the lung from the entrance of inhaled allergens, irritants, or microorganisms. This epithelial structure is maintained by tight junctions, adherens junctions and desmosomes that prevent the diffusion of soluble mediators or proteins between apical and basolateral cell surfaces. This apical junctional complex also participates in several signaling pathways involved in gene expression, cell proliferation and cell differentiation. In addition, the airway epithelium can produce chemokines and cytokines that trigger the activation of the immune response. Disruption of this complex by some inflammatory, profibrotic, and carcinogens agents c…

0301 basic medicinecyclic guanosine-3′PhysiologyInflammationReviewCell junctionNitric oxideAdherens junction03 medical and health scienceschemistry.chemical_compound0302 clinical medicinenitric oxidePhysiology (medical)medicineQP1-981bronchial epitheliumLungTight junctionnitric oxide synthasesoluble guanylyl cyclaserespiratory systemrespiratory tract diseases030104 developmental biologymedicine.anatomical_structure030228 respiratory systemchemistryExhaled nitric oxideCancer researchRespiratory epithelium5′-monophosphatemedicine.symptomFrontiers in Physiology
researchProduct

Alterations in Tight- and Adherens-Junction Proteins Related to Glaucoma Mimicked in the Organotypically Cultivated Mouse Retina Under Elevated Press…

2020

Purpose To scrutinize alterations in cellular interactions and cell signaling in the glaucomatous retina, mouse retinal explants were exposed to elevated pressure. Methods Retinal explants were prepared from C57bl6 mice and cultivated in a pressure chamber under normotensive (atmospheric pressure + 0 mm Hg), moderately elevated (30 mm Hg), and highly elevated (60 mm Hg) pressure conditions. The expression levels of proteins involved in the formation of tight junctions (zonula occludens 1 [ZO-1], occludin, and claudin-5) and adherens junctions (VE-cadherin and β-catenin) and in cell-signaling cascades (Cdc42 and activated Cdc42 kinase 1 [ACK1]), as well as the expression levels of the growth…

0301 basic medicineelevated pressureBlotting WesternVimentinReal-Time Polymerase Chain ReactionOccludinRetinaTight JunctionsAdherens junctionMice03 medical and health scienceschemistry.chemical_compoundOrgan Culture Techniques0302 clinical medicineAntigens CDOccludinmedicinecell signalingAnimalscell contactsEye Proteinscdc42 GTP-Binding ProteinReceptorretina explantsmousebeta CateninRetinabiologyTight junctionGlial fibrillary acidic proteinChemistryGlaucomaRetinalAdherens JunctionsProtein-Tyrosine KinasesCadherinsImmunohistochemistryCell biologyMice Inbred C57BLAtmospheric Pressure030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisZonula Occludens-1 Proteinbiology.proteinInvestigative Opthalmology & Visual Science
researchProduct