Search results for "Jacobian matrix"
showing 10 items of 47 documents
Using the witness method to detect rigid subsystems of geometric constraints in CAD
2010
International audience; This paper deals with the resolution of geometric constraint systems encountered in CAD-CAM. The main results are that the witness method can be used to detect that a constraint system is over-constrained and that the computation of the maximal rigid subsystems of a system leads to a powerful decomposition method. In a first step, we recall the theoretical framework of the witness method in geometric constraint solving and extend this method to generate a witness. We show then that it can be used to incrementally detect over-constrainedness. We give an algorithm to efficiently identify all maximal rigid parts of a geometric constraint system. We introduce the algorit…
Measurement and storage of a network of jacobians as a method for the visual positioning of a robot arm
1996
The goal of this paper is to describe a method to position a robot arm at any visible point of a given workspace without an explicit on line use of the analytical form of the transformations between real space and camera coordinates (camera calibration) or between cartesian and joint coordinates (direct or inverse kinematics of the robot arm). The formulation uses a discrete network of points distributed all over the workspace in which a procedure is given to measure certain Jacobian matrices which represent a good local linear approximation to the unknown compound transformation between camera and joint coordinates. This approach is inspired by the biological observation of the vestibulo-o…
Extensions of the witness method to characterize under-, over- and well-constrained geometric constraint systems
2011
International audience; This paper describes new ways to tackle several important problems encountered in geometric constraint solving, in the context of CAD, and which are linked to the handling of under- and over-constrained systems. It presents a powerful decomposition algorithm of such systems. Our methods are based on the witness principle whose theoretical background is recalled in a first step. A method to generate a witness is then explained. We show that having a witness can be used to incrementally detect over-constrainedness and thus to compute a well-constrained boundary system. An algorithm is introduced to check if anchoring a given subset of the coordinates brings the number …
Approximation of W1, Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian
2018
Abstract Let Ω ⊂ R n , n ≥ 4 , be a domain and 1 ≤ p [ n / 2 ] , where [ a ] stands for the integer part of a. We construct a homeomorphism f ∈ W 1 , p ( ( − 1 , 1 ) n , R n ) such that J f = det D f > 0 on a set of positive measure and J f 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) f k such that f k → f in W 1 , p .
Approximate Osher–Solomon schemes for hyperbolic systems
2016
This paper is concerned with a new kind of Riemann solvers for hyperbolic systems, which can be applied both in the conservative and nonconservative cases. In particular, the proposed schemes constitute a simple version of the classical Osher-Solomon Riemann solver, and extend in some sense the schemes proposed in Dumbser and Toro (2011) 19,20. The viscosity matrix of the numerical flux is constructed as a linear combination of functional evaluations of the Jacobian of the flux at several quadrature points. Some families of functions have been proposed to this end: Chebyshev polynomials and rational-type functions. Our schemes have been tested with different initial value Riemann problems f…
Mappings of finite distortion: Reverse inequalities for the Jacobian
2007
Let f be a nonconstant mapping of finite distortion. We establish integrability results on 1/Jf by studying weights that satisfy a weak reverse Holder inequality where the associated constant can depend on the ball in question. Here Jf is the Jacobian determinant of f.
Mappings of finite distortion: the degree of regularity
2005
This paper investigates the self-improving integrability properties of the so-called mappings of finite distortion. Let K(x)⩾1 be a measurable function defined on a domain Ω⊂Rn,n⩾2, and such that exp(βK(x))∈Lloc1(Ω), β>0. We show that there exist two universal constants c1(n),c2(n) with the following property: Let f be a mapping in Wloc1,1(Ω,Rn) with |Df(x)|n⩽K(x)J(x,f) for a.e. x∈Ω and such that the Jacobian determinant J(x,f) is locally in L1log−c1(n)βL. Then automatically J(x,f) is locally in L1logc2(n)βL(Ω). This result constitutes the appropriate analog for the self-improving regularity of quasiregular mappings and clarifies many other interesting properties of mappings of finite disto…
Mappings of exponentially integrable distortion: Decay of the Jacobian
2018
We establish an integrability result on the reciprocal of the Jacobian determinant for a mapping of exponentially integrable distortion and thus answer a question raised by S. Hencl and P. Koskela.
CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration
2017
International audience; In this paper, we propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for $\ell_1$ regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach that has a ``twicing'' flavor a…
An example concerning the zero set of the Jacobian
2006
AbstractLet f∈W1,1(Ω,Rn) be a homeomorphism of finite distortion K. It is known that if K1/(n−1)∈L1(Ω), then the Jacobian Jf of f is positive almost everywhere in Ω. We will show that this integrability assumption on K is sharp in any Orlicz-scale: if α is increasing function (satisfying minor technical assumptions) such that limt→∞α(t)=∞, then there exists f such that K1/(n−1)/α(K)∈L1(Ω) and Jf vanishes in a set of positive measure.