Search results for "Jacobian matrix"

showing 10 items of 47 documents

Using the witness method to detect rigid subsystems of geometric constraints in CAD

2010

International audience; This paper deals with the resolution of geometric constraint systems encountered in CAD-CAM. The main results are that the witness method can be used to detect that a constraint system is over-constrained and that the computation of the maximal rigid subsystems of a system leads to a powerful decomposition method. In a first step, we recall the theoretical framework of the witness method in geometric constraint solving and extend this method to generate a witness. We show then that it can be used to incrementally detect over-constrainedness. We give an algorithm to efficiently identify all maximal rigid parts of a geometric constraint system. We introduce the algorit…

Mathematical optimization[ INFO.INFO-MO ] Computer Science [cs]/Modeling and Simulationrigidity theorygeometric constraints solvingComputation020207 software engineeringCADJacobian matrix02 engineering and technologyW-decompositionwitness configuration16. Peace & justiceWitness[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulationsymbols.namesakeJacobian matrix and determinant0202 electrical engineering electronic engineering information engineeringsymbols020201 artificial intelligence & image processingRigidity theoryAlgorithmAlgorithmsMathematics
researchProduct

Measurement and storage of a network of jacobians as a method for the visual positioning of a robot arm

1996

The goal of this paper is to describe a method to position a robot arm at any visible point of a given workspace without an explicit on line use of the analytical form of the transformations between real space and camera coordinates (camera calibration) or between cartesian and joint coordinates (direct or inverse kinematics of the robot arm). The formulation uses a discrete network of points distributed all over the workspace in which a procedure is given to measure certain Jacobian matrices which represent a good local linear approximation to the unknown compound transformation between camera and joint coordinates. This approach is inspired by the biological observation of the vestibulo-o…

Inverse kinematicsRobot calibrationComputer sciencebusiness.industryMechanical EngineeringArm solutionIndustrial and Manufacturing Engineeringlaw.inventionComputer Science::Roboticssymbols.namesakeArtificial IntelligenceControl and Systems EngineeringPosition (vector)lawJacobian matrix and determinantsymbolsComputer visionCartesian coordinate systemArtificial intelligenceElectrical and Electronic EngineeringbusinessRobotic armSoftwareCamera resectioningJournal of Intelligent and Robotic Systems
researchProduct

Extensions of the witness method to characterize under-, over- and well-constrained geometric constraint systems

2011

International audience; This paper describes new ways to tackle several important problems encountered in geometric constraint solving, in the context of CAD, and which are linked to the handling of under- and over-constrained systems. It presents a powerful decomposition algorithm of such systems. Our methods are based on the witness principle whose theoretical background is recalled in a first step. A method to generate a witness is then explained. We show that having a witness can be used to incrementally detect over-constrainedness and thus to compute a well-constrained boundary system. An algorithm is introduced to check if anchoring a given subset of the coordinates brings the number …

[ INFO.INFO-MO ] Computer Science [cs]/Modeling and SimulationBoundary (topology)Witness configuration020207 software engineeringContext (language use)CAD02 engineering and technologyW-decompositionComputer Graphics and Computer-Aided DesignWitness[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationIndustrial and Manufacturing EngineeringComputer Science ApplicationsConstraint (information theory)symbols.namesakeTransformation groupJacobian matrix and determinant0202 electrical engineering electronic engineering information engineeringsymbolsGeometric constraints solving020201 artificial intelligence & image processingFinite setAlgorithmAlgorithmsMathematics
researchProduct

Approximation of W1, Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian

2018

Abstract Let Ω ⊂ R n , n ≥ 4 , be a domain and 1 ≤ p [ n / 2 ] , where [ a ] stands for the integer part of a. We construct a homeomorphism f ∈ W 1 , p ( ( − 1 , 1 ) n , R n ) such that J f = det ⁡ D f > 0 on a set of positive measure and J f 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) f k such that f k → f in W 1 , p .

Sobolev homeomorphismGeneral Mathematicsta111010102 general mathematicsA domain01 natural sciencesMeasure (mathematics)Homeomorphism010101 applied mathematicsSobolev spaceCombinatoricssymbols.namesakeIntegerJacobian matrix and determinantsymbolsPiecewise affine0101 mathematicsapproximationJacobianMathematicsAdvances in Mathematics
researchProduct

Approximate Osher–Solomon schemes for hyperbolic systems

2016

This paper is concerned with a new kind of Riemann solvers for hyperbolic systems, which can be applied both in the conservative and nonconservative cases. In particular, the proposed schemes constitute a simple version of the classical Osher-Solomon Riemann solver, and extend in some sense the schemes proposed in Dumbser and Toro (2011) 19,20. The viscosity matrix of the numerical flux is constructed as a linear combination of functional evaluations of the Jacobian of the flux at several quadrature points. Some families of functions have been proposed to this end: Chebyshev polynomials and rational-type functions. Our schemes have been tested with different initial value Riemann problems f…

Chebyshev polynomialsApplied MathematicsNumerical analysisMathematical analysis010103 numerical & computational mathematics01 natural sciencesRiemann solverEuler equations010101 applied mathematicsComputational Mathematicssymbols.namesakeRiemann hypothesisRiemann problemJacobian matrix and determinantsymbols0101 mathematicsShallow water equationsMathematicsApplied Mathematics and Computation
researchProduct

Mappings of finite distortion: Reverse inequalities for the Jacobian

2007

Let f be a nonconstant mapping of finite distortion. We establish integrability results on 1/Jf by studying weights that satisfy a weak reverse Holder inequality where the associated constant can depend on the ball in question. Here Jf is the Jacobian determinant of f.

symbols.namesakePure mathematicsDifferential geometryFourier analysisMathematical analysisJacobian matrix and determinantsymbolsGeometry and TopologyBall (mathematics)Reverse holder inequalityMathematicsJournal of Geometric Analysis
researchProduct

Mappings of finite distortion: the degree of regularity

2005

This paper investigates the self-improving integrability properties of the so-called mappings of finite distortion. Let K(x)⩾1 be a measurable function defined on a domain Ω⊂Rn,n⩾2, and such that exp(βK(x))∈Lloc1(Ω), β>0. We show that there exist two universal constants c1(n),c2(n) with the following property: Let f be a mapping in Wloc1,1(Ω,Rn) with |Df(x)|n⩽K(x)J(x,f) for a.e. x∈Ω and such that the Jacobian determinant J(x,f) is locally in L1log−c1(n)βL. Then automatically J(x,f) is locally in L1logc2(n)βL(Ω). This result constitutes the appropriate analog for the self-improving regularity of quasiregular mappings and clarifies many other interesting properties of mappings of finite disto…

Mathematics(all)Class (set theory)Pure mathematicsDegree (graph theory)Measurable functionPhysical constantGeneral MathematicsMathematical analysisDistortion (mathematics)symbols.namesakeBounded functionJacobian matrix and determinantsymbolsGravitational singularityMathematicsAdvances in Mathematics
researchProduct

Mappings of exponentially integrable distortion: Decay of the Jacobian

2018

We establish an integrability result on the reciprocal of the Jacobian determinant for a mapping of exponentially integrable distortion and thus answer a question raised by S. Hencl and P. Koskela.

Integrable systemApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysista11102 engineering and technology021001 nanoscience & nanotechnologyintegrability01 natural sciencesfunktioteoriasymbols.namesakeExponential growthmappings of finite distortionDistortionJacobian matrix and determinantsymbols0101 mathematicskompleksifunktiot0210 nano-technologyJacobianMathematicsProceedings of the American Mathematical Society
researchProduct

CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration

2017

International audience; In this paper, we propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for $\ell_1$ regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach that has a ``twicing'' flavor a…

FOS: Computer and information sciencesInverse problemsMathematical optimization[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer Vision and Pattern Recognition (cs.CV)General MathematicsComputer Science - Computer Vision and Pattern RecognitionMachine Learning (stat.ML)Mathematics - Statistics TheoryImage processingStatistics Theory (math.ST)02 engineering and technologyDebiasing[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]01 natural sciencesRegularization (mathematics)Boosting010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]Variational methods[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Statistics - Machine LearningRefittingMSC: 49N45 65K10 68U10[ INFO.INFO-TI ] Computer Science [cs]/Image ProcessingFOS: Mathematics0202 electrical engineering electronic engineering information engineeringCovariant transformation[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematicsImage restoration[ STAT.ML ] Statistics [stat]/Machine Learning [stat.ML]MathematicsApplied Mathematics[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]EstimatorInverse problem[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Jacobian matrix and determinantsymbolsTwicing020201 artificial intelligence & image processingAffine transformationAlgorithm
researchProduct

An example concerning the zero set of the Jacobian

2006

AbstractLet f∈W1,1(Ω,Rn) be a homeomorphism of finite distortion K. It is known that if K1/(n−1)∈L1(Ω), then the Jacobian Jf of f is positive almost everywhere in Ω. We will show that this integrability assumption on K is sharp in any Orlicz-scale: if α is increasing function (satisfying minor technical assumptions) such that limt→∞α(t)=∞, then there exists f such that K1/(n−1)/α(K)∈L1(Ω) and Jf vanishes in a set of positive measure.

Discrete mathematicsPure mathematicsZero setApplied MathematicsMinor (linear algebra)Function (mathematics)Measure (mathematics)HomeomorphismDistortion (mathematics)symbols.namesakeMapping of finite distortionJacobian matrix and determinantsymbolsAlmost everywhereJacobianAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct