6533b857fe1ef96bd12b4449

RESEARCH PRODUCT

Extensions of the witness method to characterize under-, over- and well-constrained geometric constraint systems

Christoph FünfzigPascal SchreckDominique MichelucciSimon E. B. ThierryJean-david Génevaux

subject

[ INFO.INFO-MO ] Computer Science [cs]/Modeling and SimulationBoundary (topology)Witness configuration020207 software engineeringContext (language use)CAD02 engineering and technologyW-decompositionComputer Graphics and Computer-Aided DesignWitness[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationIndustrial and Manufacturing EngineeringComputer Science ApplicationsConstraint (information theory)symbols.namesakeTransformation groupJacobian matrix and determinant0202 electrical engineering electronic engineering information engineeringsymbolsGeometric constraints solving020201 artificial intelligence & image processingFinite setAlgorithmAlgorithmsMathematics

description

International audience; This paper describes new ways to tackle several important problems encountered in geometric constraint solving, in the context of CAD, and which are linked to the handling of under- and over-constrained systems. It presents a powerful decomposition algorithm of such systems. Our methods are based on the witness principle whose theoretical background is recalled in a first step. A method to generate a witness is then explained. We show that having a witness can be used to incrementally detect over-constrainedness and thus to compute a well-constrained boundary system. An algorithm is introduced to check if anchoring a given subset of the coordinates brings the number of solutions to a finite number. An algorithm to efficiently identify all maximal well-constrained parts of a geometric constraint system is described. This allows us to design a powerful algorithm of decomposition, called W-decomposition, which is able to identify all well-constrained subsystems: it manages to decompose systems which were not decomposable by classic combinatorial methods.

https://hal.archives-ouvertes.fr/hal-00691690/file/cad11.pdf