Search results for "Joseph"
showing 10 items of 195 documents
Arrays of Josephson junctions in an environment with vanishing impedance
1999
The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.
Turnstile behaviour of the Cooper-pair pump
2003
We have experimentally studied the behaviour of the so-called Cooper pair pump (CPP) with three Josephson junctions, in the limit of small Josephson coupling EJ < EC. These experiments show that the CPP can be operated as a traditional turnstile device yielding a gate-induced current 2ef in the direction of the bias voltage, by applying an RF-signal with frequency f to the two gates in phase, while residing at the degeneracy node of the gate plane. Accuracy of the CPP during this kind of operation was about 3% and the fundamental Landau-Zener limit was observed to lie above 20 MHz. We have also measured the current pumped through the array by rotating around the degeneracy node in the ga…
Noise-induced effects in nonlinear relaxation of condensed matter systems
2015
Abstract Noise-induced phenomena characterise the nonlinear relaxation of nonequilibrium physical systems towards equilibrium states. Often, this relaxation process proceeds through metastable states and the noise can give rise to resonant phenomena with an enhancement of lifetime of these states or some coherent state of the condensed matter system considered. In this paper three noise induced phenomena, namely the noise enhanced stability, the stochastic resonant activation and the noise-induced coherence of electron spin, are reviewed in the nonlinear relaxation dynamics of three different systems of condensed matter: (i) a long-overlap Josephson junction (JJ) subject to thermal fluctuat…
Non-Gaussian noise effects in the dynamics of a short overdamped Josephson junction
2010
The role of thermal and non-Gaussian noise on the dynamics of driven short overdamped Josephson junctions is studied. The mean escape time of the junction is investigated considering Gaussian, Cauchy-Lorentz and Levy-Smirnov probability distributions of the noise signals. In these conditions we find resonant activation and the first evidence of noise enhanced stability in a metastable system in the presence of Levy noise. For Cauchy-Lorentz noise source, trapping phenomena and power law dependence on the noise intensity are observed.
RESONANT ACTIVATION AND NOISE ENHANCED STABILITY IN JOSEPHSON JUNCTIONS
2005
We investigate the interplay of two noise-induced effects on the temporal characteristics of short overdamped Josephson junctions in the presence of a periodic driving. We find that: (i) the mean life time of superconductive state has a minimum as a function of driving frequency, and near the minimum it actually does not depend on the noise intensity (resonant activation phenomenon); (ii) the noise enhanced stability phenomenon increases the switching time from superconductive to the resistive state. As a consequence there is a suitable frequency range of clock pulses, at which the noise has a minimal effect on pulse propagation in RSFQ electronic devices.
Dissipative effects on a generation scheme of a W state in an array of coupled Josephson junctions
2011
The dynamics of an open quantum system, consisting of three superconducting qubits interacting with independent reservoirs, is investigated to elucidate the effects of the environment on a unitary generation scheme of W states (Migliore R et al 2006 Phys. Rev. B 74 104503). To this end a microscopic master equation is constructed and its exact resolution predicts the generation of a Werner-like state instead of the W state. A comparison between our model and a more intuitive phenomenological model is also considered, in order to find the limits of the latter approach in the case of structured reservoirs.
EFFECTS OF COLORED NOISE IN SHORT OVERDAMPED JOSEPHSON JUNCTION
2008
We investigate the transient dynamics of a short overdamped Josephson junction with a periodic driving signal in the presence of colored noise. We analyze noise induced henomena, specifically resonant activation and noise enhanced stability. We find that the positions both of the minimum of RA and maximum of NES depend on the value of the noise correlation time tau_c. Moreover, in the range where RA is observed, we find a non-monotonic behavior of the mean switching time as a function of the correlation time tau_c.
GENERATION OF ENTANGLED STATES OF TWO DISTANT CAVITY MODES VIA JOSEPHSON JUNCTION BASED DEVICES
2007
We present a simple scheme for the preparation of entangled states of the e.m. modes of two spatially separated microwave cavities exploiting their interaction with two superconducting SQUID rings embedded within them. The scheme requires that the two SQUID qubits are initially prepared in an entangled state and the possibility of controlling both the coupling strengths and the interaction times. We also briefly discuss the importance of such a theoretical scheme in view of possible applications in the context of quantum computing and its experimental feasibility.
Decoherence in circuits of small Josephson junctions
2001
We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time $\tau_\phi$.
Geometric quantum computation with Josephson qubits
2001
The quest for large scale integrability and flexibility has stimulated an increasing interest in designing quantum computing devices. A proposal based on small-capacitance Josephson junctions in the charge regime in which quantum gates are implemented by means of adiabatic geometric phases was discussed. The proposed works, are in the charge regime where the qubit is realized by two nearly degenerate charge states of a single electron box.