Search results for "Joseph"

showing 10 items of 195 documents

Arrays of Josephson junctions in an environment with vanishing impedance

1999

The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.

PhysicsJosephson effectCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivitySupercurrentFOS: Physical sciencesCoulomb blockadeHardware_PERFORMANCEANDRELIABILITYCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperconductivity (cond-mat.supr-con)Pi Josephson junctionCondensed Matter::SuperconductivityQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Hardware_INTEGRATEDCIRCUITSCooper pairElectrical impedanceQuantum tunnellingHardware_LOGICDESIGNVoltagePhysical Review B
researchProduct

Turnstile behaviour of the Cooper-pair pump

2003

We have experimentally studied the behaviour of the so-called Cooper pair pump (CPP) with three Josephson junctions, in the limit of small Josephson coupling EJ < EC. These experiments show that the CPP can be operated as a traditional turnstile device yielding a gate-induced current 2ef in the direction of the bias voltage, by applying an RF-signal with frequency f to the two gates in phase, while residing at the degeneracy node of the gate plane. Accuracy of the CPP during this kind of operation was about 3% and the fundamental Landau-Zener limit was observed to lie above 20 MHz. We have also measured the current pumped through the array by rotating around the degeneracy node in the ga…

PhysicsJosephson effectCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityPhase (waves)FOS: Physical sciencesBiasingCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAtomic and Molecular Physics and OpticsSuperconductivity (cond-mat.supr-con)TurnstileNode (physics)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)QuasiparticleGeneral Materials ScienceCooper pairDegeneracy (mathematics)
researchProduct

Noise-induced effects in nonlinear relaxation of condensed matter systems

2015

Abstract Noise-induced phenomena characterise the nonlinear relaxation of nonequilibrium physical systems towards equilibrium states. Often, this relaxation process proceeds through metastable states and the noise can give rise to resonant phenomena with an enhancement of lifetime of these states or some coherent state of the condensed matter system considered. In this paper three noise induced phenomena, namely the noise enhanced stability, the stochastic resonant activation and the noise-induced coherence of electron spin, are reviewed in the nonlinear relaxation dynamics of three different systems of condensed matter: (i) a long-overlap Josephson junction (JJ) subject to thermal fluctuat…

PhysicsJosephson effectCondensed matter physicsStochastic processSpin polarised transport in semiconductorGeneral MathematicsApplied MathematicsQuantum noiseStochastic analysis methodsShot noiseGeneral Physics and AstronomyThermal fluctuationsResonant activationStatistical and Nonlinear PhysicsNoise processes and phenomenaSpin polarised transport in semiconductorsJosephson junctionMathematics (all)Coherent statesStochastic analysis methodSpin (physics)Noise enhanced stabilityJosephson junction; Noise enhanced stability; Noise processes and phenomena; Resonant activation; Spin polarised transport in semiconductors; Stochastic analysis methodsCoherence (physics)Chaos, Solitons & Fractals
researchProduct

Non-Gaussian noise effects in the dynamics of a short overdamped Josephson junction

2010

The role of thermal and non-Gaussian noise on the dynamics of driven short overdamped Josephson junctions is studied. The mean escape time of the junction is investigated considering Gaussian, Cauchy-Lorentz and Levy-Smirnov probability distributions of the noise signals. In these conditions we find resonant activation and the first evidence of noise enhanced stability in a metastable system in the presence of Levy noise. For Cauchy-Lorentz noise source, trapping phenomena and power law dependence on the noise intensity are observed.

PhysicsJosephson effectCondensed matter physicsnoise-induced effectGaussianQuantum noiseShot noiseRandom walk; noise-induced effects; Lévy noise; Josephson junctionRandom walkCondensed Matter PhysicsStability (probability)Power lawSettore FIS/03 - Fisica Della MateriaElectronic Optical and Magnetic MaterialsLévy noisesymbols.namesakeGaussian noiseJosephson junctionsymbolsNoise (radio)
researchProduct

RESONANT ACTIVATION AND NOISE ENHANCED STABILITY IN JOSEPHSON JUNCTIONS

2005

We investigate the interplay of two noise-induced effects on the temporal characteristics of short overdamped Josephson junctions in the presence of a periodic driving. We find that: (i) the mean life time of superconductive state has a minimum as a function of driving frequency, and near the minimum it actually does not depend on the noise intensity (resonant activation phenomenon); (ii) the noise enhanced stability phenomenon increases the switching time from superconductive to the resistive state. As a consequence there is a suitable frequency range of clock pulses, at which the noise has a minimal effect on pulse propagation in RSFQ electronic devices.

PhysicsJosephson effectJosephson phaseCondensed matter physicsRSFQ CIRCUITSJosephson energyESCAPEBARRIERTIMESStability (probability)FLUCTUATING POTENTIALSPi Josephson junctionSTATESSuperconducting tunnel junctionNoise (radio)Complexity, Metastability and Nonextensivity
researchProduct

Dissipative effects on a generation scheme of a W state in an array of coupled Josephson junctions

2011

The dynamics of an open quantum system, consisting of three superconducting qubits interacting with independent reservoirs, is investigated to elucidate the effects of the environment on a unitary generation scheme of W states (Migliore R et al 2006 Phys. Rev. B 74 104503). To this end a microscopic master equation is constructed and its exact resolution predicts the generation of a Werner-like state instead of the W state. A comparison between our model and a more intuitive phenomenological model is also considered, in order to find the limits of the latter approach in the case of structured reservoirs.

PhysicsJosephson effectOpen quantum systemQuantum mechanicsQubitPhenomenological modelMaster equationDissipative systemW stateCondensed Matter PhysicsUnitary stateAtomic and Molecular Physics and Optics
researchProduct

EFFECTS OF COLORED NOISE IN SHORT OVERDAMPED JOSEPHSON JUNCTION

2008

We investigate the transient dynamics of a short overdamped Josephson junction with a periodic driving signal in the presence of colored noise. We analyze noise induced henomena, specifically resonant activation and noise enhanced stability. We find that the positions both of the minimum of RA and maximum of NES depend on the value of the noise correlation time tau_c. Moreover, in the range where RA is observed, we find a non-monotonic behavior of the mean switching time as a function of the correlation time tau_c.

PhysicsJosephson effectPhysics and Astronomy (miscellaneous)Condensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciencesResonant activationJosephson junction; Colored noise; Resonant activation; Noise enhanced stabilityColored noiseStability (probability)SignalSettore FIS/03 - Fisica Della MateriaSuperconductivity (cond-mat.supr-con)Switching timeColors of noiseJosephson junctionRange (statistics)Transient (oscillation)Noise enhanced stabilityNoise (radio)International Journal of Quantum Information
researchProduct

GENERATION OF ENTANGLED STATES OF TWO DISTANT CAVITY MODES VIA JOSEPHSON JUNCTION BASED DEVICES

2007

We present a simple scheme for the preparation of entangled states of the e.m. modes of two spatially separated microwave cavities exploiting their interaction with two superconducting SQUID rings embedded within them. The scheme requires that the two SQUID qubits are initially prepared in an entangled state and the possibility of controlling both the coupling strengths and the interaction times. We also briefly discuss the importance of such a theoretical scheme in view of possible applications in the context of quantum computing and its experimental feasibility.

PhysicsJosephson effectPhysics and Astronomy (miscellaneous)Context (language use)Quantum entanglementJosephson junction-based devicequantum computinglaw.inventionSQUIDlawQuantum mechanicsQubitSuperconducting tunnel junctionW stateentanglementQuantum computerInternational Journal of Quantum Information
researchProduct

Decoherence in circuits of small Josephson junctions

2001

We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time $\tau_\phi$.

PhysicsJosephson effectQuantum decoherenceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsDephasingCondensed Matter - SuperconductivityFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperconductivity (cond-mat.supr-con)Pi Josephson junctionQubitQuantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting tunnel junctionCooper pairQuantum computer
researchProduct

Geometric quantum computation with Josephson qubits

2001

The quest for large scale integrability and flexibility has stimulated an increasing interest in designing quantum computing devices. A proposal based on small-capacitance Josephson junctions in the charge regime in which quantum gates are implemented by means of adiabatic geometric phases was discussed. The proposed works, are in the charge regime where the qubit is realized by two nearly degenerate charge states of a single electron box.

PhysicsJosephson effectQuantum networkEnergy Engineering and Power TechnologyHardware_PERFORMANCEANDRELIABILITYCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum technologyQuantum error correctionCondensed Matter::SuperconductivityQuantum mechanicsHardware_INTEGRATEDCIRCUITSQuantum algorithmElectrical and Electronic EngineeringQuantum informationSuperconducting quantum computingHardware_LOGICDESIGNQuantum computer
researchProduct