Search results for "Kepler"
showing 10 items of 17 documents
Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?
2009
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jup…
Action-Angle Variables
2001
In the following we will assume that the Hamiltonian does not depend explicitly on time; ∂H/∂t = 0. Then we know that the characteristic function W(q i , P i ) is the generator of a canonical transformation to new constant momenta P i , (all Q i , are ignorable), and the new Hamiltonian depends only on the P i ,: H = K = K(P i ). Besides, the following canonical equations are valid: $$ \dot Q_i = \frac{{\partial K}} {{\partial P_i }} = v_i = const. $$ (1) $$ \dot P_i = \frac{{\partial K}} {{\partial Q_i }} = 0. $$ (2)
Zvaigžņotā Debess: 2015, Vasara (228)
2015
Latvijas Universitāte
KIC 8462852: Will the Trojans return in 2021?
2017
KIC 8462852 stood out among more than 100,000 stars in the Kepler catalogue because of the strange features of its light curve: a wide, asymmetric dimming taking up to 15 per cent of the light at D793 and a period of multiple, narrow dimmings happening approximately 700 days later. Several models have been proposed to account for this abnormal behaviour, most of which require either unlikely causes or a finely-tuned timing. We aim at offering a relatively natural solution, invoking only phenomena that have been previously observed, although perhaps in larger or more massive versions. We model the system using a large, ringed body whose transit produces the first dimming and a swarm of Troja…
Zvaigžņotā Debess: 2001, Pavasaris (171)
2001
Contents: J.Ikaunieks and G.Petrov. Plan of the Radio interferometer of the Astrophysical Laboratory of the LAS ; Z.Alksne and L.Reiziņš. Astronomical Calculations by Electronic Computer ; Z.Alksne, A.Alksnis. The First Decade of the Hubble Space Telescope ; Z.Alksne. Both a Planet and a Dust Disk Orbit Iota (ι) Horologii ; Z.Alksne. The Story of Sakurai’s Star is Continuing ; J.Jaunbergs. Space News on the Web ; I.Vilks. Spaceflight. Period of Great Success (1961-1973) ; I.Abakumov. From History of the Photographic Observations of Earth Artificial Satellites ; M.Kūle. Attitude to Person: Modern Variations ; K.Bērziņš. On Friendly Terms with Cosmology: Basic Principles and Models of the Uni…
Invariant rotational curves in Sitnikov's Problem
1993
The Sitnikov's Problem is a Restricted Three-Body Problem of Celestial Mechanics depending on a parameter, the eccentricity,e. The Hamiltonian,H(z, v, t, e), does not depend ont ife=0 and we have an integrable system; ife is small the KAM Theory proves the existence of invariant rotational curves, IRC. For larger eccentricities, we show that there exist two complementary sequences of intervals of values ofe that accumulate to the maximum admissible value of the eccentricity, 1, and such that, for one of the sequences IRC around a fixed point persist. Moreover, they shrink to the planez=0 ase tends to 1.
Chaotization of internal motion of excitons in ultrathin layers by spin–orbit coupling
2018
We show that Rashba spin-orbit coupling (SOC) can generate chaotic behavior of excitons in two-dimensional semiconductor structures. To model this chaos, we study a Kepler system with spin-orbit coupling and numerically obtain a transition to chaos at a sufficiently strong coupling. The chaos emerges since the SOC reduces the number of integrals of motion as compared to the number of degrees of freedom. Dynamically, the dependence of the exciton energy on the spin orientation in the presence of SOC produces an anomalous spin-dependent velocity resulting in chaotic motion. We observe numerically the critical dependence of the dynamics on the initial conditions, where the system can return to…
(2+1)-dimensional Einstein-Kepler problem in the centre-of-mass frame
1999
We formulate and analyze the Hamiltonian dynamics of a pair of massive spinless point particles in (2+1)-dimensional Einstein gravity by anchoring the system to a conical infinity, isometric to the infinity generated by a single massive but possibly spinning particle. The reduced phase space \Gamma_{red} has dimension four and topology R^3 x S^1. \Gamma_{red} is analogous to the phase space of a Newtonian two-body system in the centre-of-mass frame, and we find on \Gamma_{red} a canonical chart that makes this analogue explicit and reduces to the Newtonian chart in the appropriate limit. Prospects for quantization are commented on.
High-Precision Radio Astrometry: The Search for Extrasolar Planets
2007
The 2 + 1 Kepler problem and its quantization
2001
We study a system of two pointlike particles coupled to three dimensional Einstein gravity. The reduced phase space can be considered as a deformed version of the phase space of two special-relativistic point particles in the centre of mass frame. When the system is quantized, we find some possibly general effects of quantum gravity, such as a minimal distances and a foaminess of the spacetime at the order of the Planck length. We also obtain a quantization of geometry, which restricts the possible asymptotic geometries of the universe.