Search results for "Kepler"

showing 10 items of 17 documents

Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

2009

We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jup…

010504 meteorology & atmospheric sciencesGas giantEvolutionAstrophysics01 natural sciencesArticleOriginPlanet0103 physical sciencesHot JupiterAstrophysics::Solar and Stellar AstrophysicsHot NeptuneKepler-10b010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsExoplanetsAstronomyAstronomy and AstrophysicsExoplanetCoRoT-7b13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsMass lossPlanetary massJupiter massIce giantPlanetary and Space Science
researchProduct

Action-Angle Variables

2001

In the following we will assume that the Hamiltonian does not depend explicitly on time; ∂H/∂t = 0. Then we know that the characteristic function W(q i , P i ) is the generator of a canonical transformation to new constant momenta P i , (all Q i , are ignorable), and the new Hamiltonian depends only on the P i ,: H = K = K(P i ). Besides, the following canonical equations are valid: $$ \dot Q_i = \frac{{\partial K}} {{\partial P_i }} = v_i = const. $$ (1) $$ \dot P_i = \frac{{\partial K}} {{\partial Q_i }} = 0. $$ (2)

CombinatoricsPhysicssymbols.namesakeCanonical variablePhase spaceKepler problemsymbolsCanonical transformationAction-angle coordinatesAction variableTransformation equationHamiltonian (quantum mechanics)
researchProduct

Zvaigžņotā Debess: 2015, Vasara (228)

2015

Latvijas Universitāte

Debess spīdekļi 2015. gada vasarāElita Ansone “Saules sistēmas perspektīva”Ūdeņradis un ūdens uz Zemes un VisumāGalaktiku lauks Abell 2744Klaipēdas pulksteņu muzejsAstronomija un ģeodēzija Latvijā līdz 20. gadsimtamKepler-444 sistēma ar piecām mazām planētāmLVU astronomijas studenti – vēstules:NATURAL SCIENCES::Physics::Astronomy and astrophysics [Research Subject Categories]Atskats uz 2015. gada StarParty #13 jeb “Gaismu”LU profesors Jurijs Kuzmins (1940-2014Astromaģija kuru dēvē par astroloģijuSaules aptumsuma novērojumi LatvijāMatemātiķim Jānim Dambītim – 85Par astrofiziķim Hokingam veltītās filmas nosaukumu2015. gada pavasara ekvinokcijas nedēļaLatvijas 65. matemātikas olimpiādes 3. posma uzdevumiPN A66 33 un HD 83535 sastapšanāsAstronomija filatēlijā 2010-2013Pilnais Saules aptumsums Svalbārā
researchProduct

KIC 8462852: Will the Trojans return in 2021?

2017

KIC 8462852 stood out among more than 100,000 stars in the Kepler catalogue because of the strange features of its light curve: a wide, asymmetric dimming taking up to 15 per cent of the light at D793 and a period of multiple, narrow dimmings happening approximately 700 days later. Several models have been proposed to account for this abnormal behaviour, most of which require either unlikely causes or a finely-tuned timing. We aim at offering a relatively natural solution, invoking only phenomena that have been previously observed, although perhaps in larger or more massive versions. We model the system using a large, ringed body whose transit produces the first dimming and a swarm of Troja…

Earth and Planetary Astrophysics (astro-ph.EP)Physics010308 nuclear & particles physicsFOS: Physical sciencesSwarm behaviourAstronomyAstronomy and AstrophysicsAstrophysicsLight curveOrbital period01 natural sciencesKeplerStarsOrbitSpace and Planetary ScienceTrojan0103 physical sciencesAstrophysics::Earth and Planetary AstrophysicsTransit (astronomy)010303 astronomy & astrophysicsAstrophysics - Earth and Planetary AstrophysicsMonthly Notices of the Royal Astronomical Society: Letters
researchProduct

Zvaigžņotā Debess: 2001, Pavasaris (171)

2001

Contents: J.Ikaunieks and G.Petrov. Plan of the Radio interferometer of the Astrophysical Laboratory of the LAS ; Z.Alksne and L.Reiziņš. Astronomical Calculations by Electronic Computer ; Z.Alksne, A.Alksnis. The First Decade of the Hubble Space Telescope ; Z.Alksne. Both a Planet and a Dust Disk Orbit Iota (ι) Horologii ; Z.Alksne. The Story of Sakurai’s Star is Continuing ; J.Jaunbergs. Space News on the Web ; I.Vilks. Spaceflight. Period of Great Success (1961-1973) ; I.Abakumov. From History of the Photographic Observations of Earth Artificial Satellites ; M.Kūle. Attitude to Person: Modern Variations ; K.Bērziņš. On Friendly Terms with Cosmology: Basic Principles and Models of the Uni…

Eilera kvadrātiHabla kosmiskais teleskops – vēstureSakuraja zvaigzneBrīvā mājupceļa trajektorijas uz MarsuLatvijas atklātā fizikas olimpiāde – uzdevumi un rezultātiPavasara zvaigznājiEfemerīdu izskaitļošanaAttieksme pret cilvēkuPlanēta ap Pulksteņa JotuPar kosmosu -- publikācijas InternetāSīriusa vairākkārtīgā sistēmaAstronomiskie aprēķiniRīgas atklātā skolēnu astronomijas olimpiādeSaules pulksteņi LatvijaiAstronomijas skolotāju asociācijaAstronomijas institūts – darbības pārskatsLasītāju vēstulesPasaules radīšana – Bībele un zinātneKeplera elipse – īsākā laika ceļšKosmoloģijaStarptautiskā komandu olimpiāde “Baltijas ceļš” matemātikāAstronomiskais testsZemes mākslīgie pavadoņi – fotogrāfiskie novērojumi – vēstureIlgmārs Eglītis – 50LZA Astrofizikas laboratorijas radiointerferometra projektsMarsa konkurss lasītājiemAstronomiskās parādības - 2001Marsa vulkāni nogulumieži klimata vēstureLasītāju aptauja - rezultātiKosmiskie lidojumi (1961-1973)Binomiālo koeficientu dalāmība
researchProduct

Invariant rotational curves in Sitnikov's Problem

1993

The Sitnikov's Problem is a Restricted Three-Body Problem of Celestial Mechanics depending on a parameter, the eccentricity,e. The Hamiltonian,H(z, v, t, e), does not depend ont ife=0 and we have an integrable system; ife is small the KAM Theory proves the existence of invariant rotational curves, IRC. For larger eccentricities, we show that there exist two complementary sequences of intervals of values ofe that accumulate to the maximum admissible value of the eccentricity, 1, and such that, for one of the sequences IRC around a fixed point persist. Moreover, they shrink to the planez=0 ase tends to 1.

Kolmogorov–Arnold–Moser theoremApplied MathematicsMathematical analysisKepler's laws of planetary motionAstronomy and AstrophysicsGeometryInvariant (physics)Fixed pointThree-body problemSitnikov problemCelestial mechanicsComputational Mathematicssymbols.namesakeSpace and Planetary ScienceModeling and SimulationsymbolsAstrophysics::Earth and Planetary AstrophysicsHamiltonian (quantum mechanics)Mathematical PhysicsMathematicsCelestial Mechanics & Dynamical Astronomy
researchProduct

Chaotization of internal motion of excitons in ultrathin layers by spin–orbit coupling

2018

We show that Rashba spin-orbit coupling (SOC) can generate chaotic behavior of excitons in two-dimensional semiconductor structures. To model this chaos, we study a Kepler system with spin-orbit coupling and numerically obtain a transition to chaos at a sufficiently strong coupling. The chaos emerges since the SOC reduces the number of integrals of motion as compared to the number of degrees of freedom. Dynamically, the dependence of the exciton energy on the spin orientation in the presence of SOC produces an anomalous spin-dependent velocity resulting in chaotic motion. We observe numerically the critical dependence of the dynamics on the initial conditions, where the system can return to…

PhysicsCouplingChaoticDegrees of freedom (physics and chemistry)General Physics and AstronomyEquations of motion02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeClassical mechanicsKepler problemOrientation (geometry)0103 physical sciencessymbolsPhysical and Theoretical Chemistry010306 general physics0210 nano-technologySpin-½Physical Chemistry Chemical Physics
researchProduct

(2+1)-dimensional Einstein-Kepler problem in the centre-of-mass frame

1999

We formulate and analyze the Hamiltonian dynamics of a pair of massive spinless point particles in (2+1)-dimensional Einstein gravity by anchoring the system to a conical infinity, isometric to the infinity generated by a single massive but possibly spinning particle. The reduced phase space \Gamma_{red} has dimension four and topology R^3 x S^1. \Gamma_{red} is analogous to the phase space of a Newtonian two-body system in the centre-of-mass frame, and we find on \Gamma_{red} a canonical chart that makes this analogue explicit and reduces to the Newtonian chart in the appropriate limit. Prospects for quantization are commented on.

PhysicsHamiltonian mechanicsPhysics and Astronomy (miscellaneous)One-dimensional spaceFOS: Physical sciencesConical surfaceGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyQuantization (physics)symbols.namesakeKepler problemPhase spacesymbolsNewtonian fluidEinsteinMathematical physics
researchProduct

High-Precision Radio Astrometry: The Search for Extrasolar Planets

2007

PhysicsKepler-22bKepler-37dExomoonAstronomyAstrometryExoplanetAstrobiology
researchProduct

The 2 + 1 Kepler problem and its quantization

2001

We study a system of two pointlike particles coupled to three dimensional Einstein gravity. The reduced phase space can be considered as a deformed version of the phase space of two special-relativistic point particles in the centre of mass frame. When the system is quantized, we find some possibly general effects of quantum gravity, such as a minimal distances and a foaminess of the spacetime at the order of the Planck length. We also obtain a quantization of geometry, which restricts the possible asymptotic geometries of the universe.

PhysicsPhysics and Astronomy (miscellaneous)SpacetimeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyGeneral Relativity and Quantum Cosmologysymbols.namesakeQuantization (physics)Classical mechanicsPhase spaceKepler problemsymbolsQuantum gravityPoint (geometry)EinsteinPlanck lengthClassical and Quantum Gravity
researchProduct