Search results for "LEAF AREA INDEX"
showing 10 items of 105 documents
Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products
2008
International audience; This paper evaluates the performances of a neural network approach to estimate LAI from CYCLOPES and MODIS nadir normalized reflectance and LAI products. A data base was generated from these products over the BELMANIP sites during the 2001-2003 period. Data were aggregated at 3 km x 3 km, resampled at 1/16 days temporal frequency and filtered to reject outliers. VEGETATION and MODIS reflectances show very consistent values in the red, near infrared and short wave infrared bands. Neural networks were trained over part of this data base for each of the 6 MODIS biome classes to retrieve both MODIS and CYCLOPES LAI products. Results show very good performances of neural …
A Critical Comparison of Remote Sensing Leaf Area Index Estimates over Rice-Cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUM…
2018
Leaf area index (LAI) is a key biophysical variable fundamental in natural vegetation and agricultural land monitoring and modelling studies. This paper is aimed at comparing, validating and discussing different LAI satellite products from operational services and customized solution based on innovative Earth Observation (EO) data such as Landsat-7/8 and Sentinel-2A. The comparison was performed to assess overall quality of LAI estimates for rice, as a fundamental input of different scale (regional to local) operational crop monitoring systems such as the ones developed during the "An Earth obseRvation Model based RicE information Service" (ERMES) project. We adopted a multiscale approach f…
Use of Guided Regularized Random Forest for Biophysical Parameter Retrieval
2018
This paper introduces a feature selection method based on random forest -the Guided Regularized Random Forest (GRRF)- which can be used in classification and regression tasks. The method is based on the regularization of the information gain in the random forest nodes to obtain a subset of relevant and non-redundant features. The proposed method is used as a preliminary step In the process of retrieving biophysical parameters from a hyperspectral image. Preliminary experiments show that we can reduce the RMSE of the retrievals by around 7% for the Leaf Area Index and around 8% for the fraction of vegetation cover when compared to the results using random forest features.
Geostatistics for Mapping Leaf Area Index over a Cropland Landscape: Efficiency Sampling Assessment
2010
This paper evaluates the performance of spatial methods to estimate leaf area index (LAI) fields from ground-based measurements at high-spatial resolution over a cropland landscape. Three geostatistical model variants of the kriging technique, the ordinary kriging (OK), the collocated cokriging (CKC) and kriging with an external drift (KED) are used. The study focused on the influence of the spatial sampling protocol, auxiliary information, and spatial resolution in the estimates. The main advantage of these models lies in the possibility of considering the spatial dependence of the data and, in the case of the KED and CKC, the auxiliary information for each location used for prediction pur…
Direct validation of FVC, LAI and FAPAR VEGETATION/SPOT derived products using LSA SAF methodology
2007
The aim of this work is to perform a direct validation of fraction of vegetation cover (FVC), leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) resulting products from applying the LSA SAF methodology to VEGETATION BRDF data. LSA SAF adapted algorithms were tested in adequate test sites comprising different continental biomes covering a wide range of FVC, LAI and FAPAR values. Results seem to indicate the competitiveness of LSA SAF proposed methodology to retrieve remotely sensed biophysical parameters. A noticeable good agreement regarding the ground measurements was found. The overall accuracy (RAISE) is around 20% for FVC and FAPAR and around 15% …
Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system
2016
Abstract The paper provides a contribution for populating database of three physical parameters needed to model energy performance of buildings with green roofs: “coverage ratio” ( σ f ), leaf area index (LAI) and leaf temperature ( T f ). On purpose, six plant species were investigated experimentally: Phyla nordiflora, Aptenia lancifolia , Mesembryanthenum barbatus , Gazania nivea, Gazania uniflora , and Sedum . Proper ranges of the cited parameters have been found for each species. The here indicated ranges of σ f values refer to different growth levels of the species in the same lapse of time, that is four months. Single measured LAI values are also reported for the same plants. As for t…
Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models
2019
Vegetation indices (VIs) are widely used in optical remote sensing to estimate biophysical variables of vegetated surfaces. With the advent of spectroscopy technology, spectral bands can be combined in numerous ways to extract the desired information. This resulted in a plethora of proposed indices, designed for a diversity of applications and research purposes. However, it is not always clear whether they are sensitive to the variable of interest while at the same time, responding insensitive to confounding factors. Hence, to be able to quantify the robustness of VIs, a systematic evaluation is needed, thereby introducing a widest possible variety of biochemical and structural heterogeneit…
Retrieving leaf area index from multi-angular airborne data
2009
This work is aimed to demonstrate the feasibility of a methodology for retrieving bio-geophysical variables whilst at the same time fully accounting for additional information on directional anisotropy. A model-based approach has been developed to deconvolve the angular reflectance into single landcovers reflectances, attempting to solve the inconsistencies of 1D models and linear mixture approaches. The model combines the geometric optics of large scale canopy structure with principles of radiative transfer for volume scattering within individual crowns. The reliability of the model approach to retrieve LAI has been demonstrated using data from DAISEX- 99 campaign at Barrax, Spain. Airborn…
Hyperspectral response of agronomic variables to background optical variability: Results of a numerical experiment
2022
Understanding how biophysical and biochemical variables contribute to the spectral characteristics of vegetation canopies is critical for their monitoring. Quantifying these contributions, however, remains difficult due to extraneous factors such as the spectral variability of canopy background materials, including soil/crop-residue moisture, soil-type, and non-photosynthetic vegetation (NPV). This study focused on exploring the spectral response of two important agronomic variables (1) leaf chlorophyll content (Cab ) and (2) leaf area index (LAI) under various canopy backgrounds through a global sensitivity analysis of wheat-like canopy spectra simulated using the physically-based PROSAIL …
Derivation of global vegetation biophysical parameters from EUMETSAT Polar System
2020
Abstract This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological–Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key par…