Search results for "LEAF AREA INDEX"

showing 10 items of 105 documents

Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products

2008

International audience; This paper evaluates the performances of a neural network approach to estimate LAI from CYCLOPES and MODIS nadir normalized reflectance and LAI products. A data base was generated from these products over the BELMANIP sites during the 2001-2003 period. Data were aggregated at 3 km x 3 km, resampled at 1/16 days temporal frequency and filtered to reject outliers. VEGETATION and MODIS reflectances show very consistent values in the red, near infrared and short wave infrared bands. Neural networks were trained over part of this data base for each of the 6 MODIS biome classes to retrieve both MODIS and CYCLOPES LAI products. Results show very good performances of neural …

[SPI.OTHER]Engineering Sciences [physics]/OtherMean squared errorBiome0211 other engineering and technologiesSoil Science02 engineering and technologyNEURAL NETWORKSStandard deviationALBEDONadirComputers in Earth SciencesLeaf area indexLEA021101 geological & geomatics engineeringRemote sensingMathematicsCYCLOPESGeology04 agricultural and veterinary sciencesVegetation15. Life on landCONSISTENCY OF PRODUCTSRESEAU DE NEURONESMODISTemporal resolutionOutlier040103 agronomy & agriculture0401 agriculture forestry and fisheriesVEGETATIONLEAF AREA INDEX
researchProduct

A Critical Comparison of Remote Sensing Leaf Area Index Estimates over Rice-Cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUM…

2018

Leaf area index (LAI) is a key biophysical variable fundamental in natural vegetation and agricultural land monitoring and modelling studies. This paper is aimed at comparing, validating and discussing different LAI satellite products from operational services and customized solution based on innovative Earth Observation (EO) data such as Landsat-7/8 and Sentinel-2A. The comparison was performed to assess overall quality of LAI estimates for rice, as a fundamental input of different scale (regional to local) operational crop monitoring systems such as the ones developed during the "An Earth obseRvation Model based RicE information Service" (ERMES) project. We adopted a multiscale approach f…

Earth observation010504 meteorology & atmospheric sciencesMean squared errorRice crops0211 other engineering and technologies02 engineering and technology01 natural sciencesLandsat-7/8Agricultural landGEOV1ValidationmedicineLeaf Area Index (LAI)Leaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2. Zero hungerSentinel-2AVegetation15. Life on landSeasonalitymedicine.diseaseMODISLeaf Area Index (LAI); rice crops; Sentinel-2A; Landsat-7/8; EUMETSAT Polar System; MODIS; GEOV1; validationEUMETSAT Polar SystemGeneral Earth and Planetary SciencesEnvironmental scienceSatelliteScale (map)Remote Sensing; Volume 10; Issue 5; Pages: 763
researchProduct

Use of Guided Regularized Random Forest for Biophysical Parameter Retrieval

2018

This paper introduces a feature selection method based on random forest -the Guided Regularized Random Forest (GRRF)- which can be used in classification and regression tasks. The method is based on the regularization of the information gain in the random forest nodes to obtain a subset of relevant and non-redundant features. The proposed method is used as a preliminary step In the process of retrieving biophysical parameters from a hyperspectral image. Preliminary experiments show that we can reduce the RMSE of the retrievals by around 7% for the Leaf Area Index and around 8% for the fraction of vegetation cover when compared to the results using random forest features.

Mean squared error22/3 OA procedurebusiness.industryComputer scienceFeature extractionHyperspectral images0211 other engineering and technologiesHyperspectral imagingPattern recognitionFeature selection02 engineering and technologyBiophysical parameter retrievalRegularization (mathematics)RegressionRandom forestFeature selection0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceLeaf area indexbusinessRandom forest021101 geological & geomatics engineeringIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Geostatistics for Mapping Leaf Area Index over a Cropland Landscape: Efficiency Sampling Assessment

2010

This paper evaluates the performance of spatial methods to estimate leaf area index (LAI) fields from ground-based measurements at high-spatial resolution over a cropland landscape. Three geostatistical model variants of the kriging technique, the ordinary kriging (OK), the collocated cokriging (CKC) and kriging with an external drift (KED) are used. The study focused on the influence of the spatial sampling protocol, auxiliary information, and spatial resolution in the estimates. The main advantage of these models lies in the possibility of considering the spatial dependence of the data and, in the case of the KED and CKC, the auxiliary information for each location used for prediction pur…

cropland landscapeleaf area indexScienceQgeostatistics methodsSampling (statistics)GeostatisticsField (geography)KrigingGeneral Earth and Planetary SciencesCommon spatial patternSpatial dependenceLeaf area indexVariogramspatial samplingMathematicsRemote sensingRemote Sensing
researchProduct

Direct validation of FVC, LAI and FAPAR VEGETATION/SPOT derived products using LSA SAF methodology

2007

The aim of this work is to perform a direct validation of fraction of vegetation cover (FVC), leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR) resulting products from applying the LSA SAF methodology to VEGETATION BRDF data. LSA SAF adapted algorithms were tested in adequate test sites comprising different continental biomes covering a wide range of FVC, LAI and FAPAR values. Results seem to indicate the competitiveness of LSA SAF proposed methodology to retrieve remotely sensed biophysical parameters. A noticeable good agreement regarding the ground measurements was found. The overall accuracy (RAISE) is around 20% for FVC and FAPAR and around 15% …

FEV1/FVC ratioPhotosynthetically active radiationBiomeEnvironmental scienceEnhanced vegetation indexVegetationBidirectional reflectance distribution functionLeaf area indexVegetation coverRemote sensing2007 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system

2016

Abstract The paper provides a contribution for populating database of three physical parameters needed to model energy performance of buildings with green roofs: “coverage ratio” ( σ f ), leaf area index (LAI) and leaf temperature ( T f ). On purpose, six plant species were investigated experimentally: Phyla nordiflora, Aptenia lancifolia , Mesembryanthenum barbatus , Gazania nivea, Gazania uniflora , and Sedum . Proper ranges of the cited parameters have been found for each species. The here indicated ranges of σ f values refer to different growth levels of the species in the same lapse of time, that is four months. Single measured LAI values are also reported for the same plants. As for t…

Building cooling demandGazania020209 energyGreen roof02 engineering and technologyAtmospheric sciencesIndustrial and Manufacturing EngineeringLeaf temperatureBotanyGreen roof0202 electrical engineering electronic engineering information engineeringRange (statistics)Fractional vegetation coverageElectrical and Electronic EngineeringLeaf area indexCivil and Structural EngineeringMathematicsSettore ING-IND/11 - Fisica Tecnica AmbientalebiologyApteniaMechanical EngineeringEnergy performanceModelingBuilding and ConstructionVegetationbiology.organism_classificationPollutionSedumGeneral EnergyLeaf area index
researchProduct

Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models

2019

Vegetation indices (VIs) are widely used in optical remote sensing to estimate biophysical variables of vegetated surfaces. With the advent of spectroscopy technology, spectral bands can be combined in numerous ways to extract the desired information. This resulted in a plethora of proposed indices, designed for a diversity of applications and research purposes. However, it is not always clear whether they are sensitive to the variable of interest while at the same time, responding insensitive to confounding factors. Hence, to be able to quantify the robustness of VIs, a systematic evaluation is needed, thereby introducing a widest possible variety of biochemical and structural heterogeneit…

Canopy010504 meteorology & atmospheric sciences0211 other engineering and technologiesImaging spectrometer02 engineering and technology01 natural sciencesprosailEnMAPRadiative transferSensitivity (control systems)Leaf area indexglobal sensitivity analysis; vegetation indices; PROSAIL; INFORM; ARTMOlcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingartmoSpectral bandsVegetation15. Life on landinformglobal sensitivity analysisvegetation indicesGeneral Earth and Planetary SciencesEnvironmental sciencelcsh:QRemote Sensing
researchProduct

Retrieving leaf area index from multi-angular airborne data

2009

This work is aimed to demonstrate the feasibility of a methodology for retrieving bio-geophysical variables whilst at the same time fully accounting for additional information on directional anisotropy. A model-based approach has been developed to deconvolve the angular reflectance into single landcovers reflectances, attempting to solve the inconsistencies of 1D models and linear mixture approaches. The model combines the geometric optics of large scale canopy structure with principles of radiative transfer for volume scattering within individual crowns. The reliability of the model approach to retrieve LAI has been demonstrated using data from DAISEX- 99 campaign at Barrax, Spain. Airborn…

MeteorologyGeometrical opticslcsh:QC801-809Inversion (meteorology)lcsh:QC851-999LAImulti-angularinversionlcsh:Geophysics. Cosmic physicsGeophysicsRadiative transferEnvironmental sciencelcsh:Meteorology. ClimatologyDeconvolutionPOLDERLeaf area indexVolume scatteringHyMapHyMapDirectional anisotropyRemote sensing
researchProduct

Hyperspectral response of agronomic variables to background optical variability: Results of a numerical experiment

2022

Understanding how biophysical and biochemical variables contribute to the spectral characteristics of vegetation canopies is critical for their monitoring. Quantifying these contributions, however, remains difficult due to extraneous factors such as the spectral variability of canopy background materials, including soil/crop-residue moisture, soil-type, and non-photosynthetic vegetation (NPV). This study focused on exploring the spectral response of two important agronomic variables (1) leaf chlorophyll content (Cab ) and (2) leaf area index (LAI) under various canopy backgrounds through a global sensitivity analysis of wheat-like canopy spectra simulated using the physically-based PROSAIL …

Atmospheric ScienceResilient LivelihoodsLEAF-AREA-INDEXSoil typePHOTOCHEMICAL REFLECTANCE INDEXBIOPHYSICAL PROPERTIESMeteorology & Atmospheric SciencesAdaptationLeaf chlorophyll contentGlobal and Planetary ChangeScience & TechnologyVEGETATION INDEXESSPECTRAL INDEXESGLOBAL SENSITIVITY-ANALYSISAgricultureNon-photosynthetic vegetationForestry22/4 OA procedureAgronomyHyperspectral responseGlobal sensitivity analysisITC-ISI-JOURNAL-ARTICLEPhysical SciencesLeaf area indexCHLOROPHYLL CONTENTGREEN LAILife Sciences & BiomedicineCANOPY REFLECTANCEAgronomy and Crop ScienceRADIATIVE-TRANSFER MODELAgricultural and Forest Meteorology
researchProduct

Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

2020

Abstract This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological–Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key par…

010504 meteorology & atmospheric sciencesAdvanced very-high-resolution radiometerImage and Video Processing (eess.IV)0211 other engineering and technologies02 engineering and technologyVegetationElectrical Engineering and Systems Science - Image and Video Processing01 natural sciencesAtomic and Molecular Physics and OpticsComputer Science Applications13. Climate actionKrigingFOS: Electrical engineering electronic engineering information engineeringRadiative transferRange (statistics)Environmental scienceSatelliteSensitivity (control systems)Computers in Earth SciencesLeaf area indexEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingISPRS Journal of Photogrammetry and Remote Sensing
researchProduct