Search results for "Lactobacillus"

showing 3 items of 353 documents

Factors affecting the production of putrescine from agmatine by Lactobacillus hilgardii X1B isolated from wine

2008

Aims: To elucidate and characterize the metabolic putrescine synthesis pathway from agmatine by Lactobacillus hilgardii X1B. Methods and Results: The putrescine formation from agmatine by resting cells (the normal physiological state in wine) of lactic acid bacteria isolated from wine has been determined for the first time. Agmatine deiminase and N-carbamoylputrescine hydrolase enzymes, determined by HPLC and LC-Ion Trap Mass Spectrometry, carried out the putrescine synthesis from agmatine. The influence of pH, temperature, organic acids, amino acids, sugars and ethanol on the putrescine formation in wine was determined. Conclusions: Resting cells of Lact. hilgardii X 1B produce putrescine …

ved/biology.organism_classification_rank.speciesLactobacillus hilgardiiApplied Microbiology and BiotechnologyCiencias Biológicas//purl.org/becyt/ford/1 [https]chemistry.chemical_compoundBiología Celular MicrobiologíaLACTIC ACID BACTERIABiogenic amine//purl.org/becyt/ford/1.6 [https]chemistry.chemical_classificationWineved/biologyfood and beveragesBIOGENIC AMINESWINEGeneral MedicinePUTRESCINEAmino acidLactic acidAgmatine deiminasechemistryBiochemistryPutrescineAGMATINE DEIMINASEAgmatineCIENCIAS NATURALES Y EXACTASBiotechnology
researchProduct

Regulation of hdc expression and HDC activity by enological factors in lactic acid bacteria.

2008

Aims:  The aim of this work was to study the influence of enological factors on the histidine decarboxylase gene (hdc) expression and on histidine decarboxylase enzyme (HDC) activity in Lactobacillus hilgardii, Pediococcus parvulus and Oenococcus oeni. Methods and Results:  Cell extracts and whole cells were used. Glucose, fructose, malic acid and citric acid diminished the hdc expression. Ethanol did not increase hdc expression or activity in cells, but increased HDC activity. Temperature and pH had effect on the activity of HDC but not on hdc expression. Tartaric acid and l-lactic acid, and sulphur dioxide (SO2) had no effect on enzyme synthesis and activity. Bacterial species differ in t…

ved/biology.organism_classification_rank.speciesLactobacillus hilgardiiFructoseHistidine DecarboxylaseApplied Microbiology and Biotechnologychemistry.chemical_compoundMalolactic fermentationSulfur DioxideDicarboxylic AcidsPediococcusOenococcus oenibiologyved/biologyTemperaturefood and beveragesFructoseGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classificationHistidine decarboxylaseEnzyme assayLactic acidCulture MediaLactobacillusGlucosechemistryBiochemistryGene Expression RegulationLactobacillaceaeFermentationbiology.proteinMalic acidLeuconostocBiotechnologyJournal of applied microbiology
researchProduct

Microbial dynamics during green Sicilian table olive fermentations

2009

The production of green table olives is traditionally a spontaneous fermentation carried out by indigenous microflora. Variability of microbial raw material may result in changes in the qualitative aspects of final products (Silvestri et al., 2009). Table olives of five different green table olive cultivars (four Sicilian Brandofino, Castriciana, Nocellara del Belice and Passalunara and the Spanish Manzanilla) were produced according to a semi-industrial technology, in which lactic acid bacteria (LAB) role is partially replaced by lactic acid addiction. Transformation processes were studied by a combined strategy consisting of chemical, microbiological and sensory analyses. Yeasts harboured…

yeasts.Fermentationgreen Sicilian table oliveolive fermentation LABLactobacillus coryniformiLactobacillus plantarum
researchProduct