Search results for "Lamb shift"
showing 10 items of 35 documents
Lamb shift of a uniformly accelerated hydrogen atom in the presence of a conducting plate
2009
We investigate the effects of acceleration on the energy-level shifts of a hydrogen atom interacting with the electromagnetic field and in the presence of an infinite perfectly conducting plate. We consider the contributions of vacuum fluctuations and of the radiation reaction field to the Lamb shift, and we discuss their dependence from the acceleration of the atom. We show that, because of the presence of the boundary, both vacuum field fluctuations and radiation reaction field contributions are affected by atomic acceleration. In particular, the effect of the vacuum field fluctuations on the energy-level shifts is not equivalent to that of a thermal field. We also discuss the dependence …
Initial state radiation experiment at MAMI
2014
In an attempt to contribute further insight into the discrepancy between the Lamb shift and elastic scattering determinations of the proton charge radius, a new experiment at MAMI is underway, aimed at measuring proton form-factors at very low momentum transfers by using a new technique based on initial state radiation. This paper reports on the conclusions of the pilot measurement performed in 2010, whose main goal was to check the feasibility of the proposed experiment and to recognize and overcome any obstacles before running the full experiment. The modifications to the experimental apparatus are then explained which significantly improved the quality of data collected in the full scale…
Energy level shifts of a uniformly accelerated atom in the presence of boundary conditions
2009
We discuss the radiative level shifts of an atom moving with uniform acceleration near an infinite reflecting plate. We first consider the case of a two-level system interacting with a massless scalar field in the vacuum state. The acceleration of the two-level atom is supposed in a direction parallel to the conducting plate. We evaluate the contribution of vacuum fluctuations and of the radiation reaction field to the energy shift of the atomic levels, and discuss their behaviour as a function of the atomic acceleration and of the atom-plate distance. Then, we investigate the more general case of an hydrogen atom accelerating near a perfectly reflecting plate and interacting with the elect…
The next generation of laser spectroscopy experiments using light muonic atoms
2018
Precision spectroscopy of light muonic atoms provides unique information about the atomic and nuclear structure of these systems and thus represents a way to access fundamental interactions, properties and constants. One application comprises the determination of absolute nuclear charge radii with unprecedented accuracy from measurements of the 2S - 2P Lamb shift. Here, we review recent results of nuclear charge radii extracted from muonic hydrogen and helium spectroscopy and present experiment proposals to access light muonic atoms with Z ≥ 3. In addition, our approaches towards a precise measurement of the Zemach radii in muonic hydrogen (μp) and helium (μ 3He+) are discussed. These resul…
Theory of the Lamb Shift and fine structure in muonic 4He ions and the muonic 3He– 4He Isotope Shift
2018
Abstract We provide an up to date summary of the theory contributions to the 2S → 2P Lamb shift and the fine structure of the 2P state in the muonic helium ion ( μ 4 He ) + . This summary serves as the basis for the extraction of the alpha particle charge radius from the muonic helium Lamb shift measurements at the Paul Scherrer Institute, Switzerland. Individual theory contributions needed for a charge radius extraction are compared and compiled into a consistent summary. The influence of the alpha particle charge distribution on the elastic two-photon exchange is studied to take into account possible model-dependencies of the energy levels on the electric form factor of the nucleus. We al…
Status and perspectives of atomic physics research at GSI
2003
A short overview on the results of atomic physics research at the storage ring ESR is given followed by a presentation of the envisioned atomic physics program at the planned new GSI facility. The proposed new GSI facility will provide highest intensities of relativistic beams of both stable and unstable heavy nuclei - up to a Lorentz factor of 24. At those relativistic velocities, the energies of optical transitions, such as for lasers.. are boosted into the X-ray region and the high-charge state ions generate electric and magnetic fields of exceptional strength. Together with high beam intensities a range of important experiments can be anticipated, for example electronic transitions in r…
The subtraction contribution to the muonic-hydrogen Lamb shift: a point for lattice QCD calculations of the polarizability effect
2020
The proton-polarizability contribution to the muonic-hydrogen Lamb shift is a major source of theoretical uncertainty in the extraction of the proton charge radius. An empirical evaluation of this effect, based on the proton structure functions, requires a systematically improvable calculation of the "subtraction function", possibly using lattice QCD. We consider a different subtraction point, with the aim of accessing the subtraction function directly in lattice calculations. A useful feature of this subtraction point is that the corresponding contribution of the structure functions to the Lamb shift is suppressed. The whole effect is dominated by the subtraction contribution, calculable o…
Puzzling out the proton radius puzzle
2014
The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius, are described.
ISR Experiment at A1-Collaboration
2019
The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics. In a pursuit of reconciling the puzzle an experiment is underway at MAMI, which exploits the radiative tail of the elastic peak to study the properties of electromagnetic processes and to extract the proton charge form factor $ \left( {\mathop G\nolimits_E^p } \right) $ at extremely small Q2. This paper reports on the latest results of the first such measurement performed at the three-spectrometer facility of the A1-Collaboration,…
Precise determination of the 1s Lamb shift in hydrogen-like lead and gold using microcalorimeters
2016
Quantum electrodynamics in very strong Coulomb fields is one scope which has not yet been tested experimentally with suffcient accuracy to really determine whether the perturbative approach is valid. One sensitive test is the determination of the 1s Lamb Shift in highly-charged very heavy ions. The 1s Lamb Shift of hydrogen-like lead (Pb81+) and gold (Au78+) has been determined using the novel detector concept of silicon microcalorimeters for the detection of hard X-rays. The results of (260 +- 22) eV for lead and (208 +- 13) eV for gold are within error bars in good agreement with theoretical predictions. For hydrogen-like lead, this represents the most accurate determination of the 1s Lam…