Search results for "Landslides"
showing 10 items of 35 documents
A spatially distributed and physically based tool to modelling rainfall-triggered landslides
2009
Landslides are a serious threat to lives and property throughout the world. Over the last few years the need to provide consistent tools and support to decision-makers and land managers have led to significant progress in the analysis and understanding of the occurrence of landslides. The causes of landslides are varied. Multiple dynamic processes are involved in driving slope failures. One of these causes is prolonged rainfall, which affect slope stability in different ways. Water entering the ground beneath a slope always causes a rise of the piezometric surface, which in turn involves an increase of the pore-water pressure and a decrease of the soil shear resistance. For this reason, kno…
Unsaturated sand in the stability of the cuesta of the Temple of Hera (Agrigento)
2013
In the Valle dei Templi in Agrigento seven Doric temples stand lengthwise the crest of a rigid calcarenite cuesta over a layer of carbonate sand which lies along a thick stratum of clays. The environment is highly prone to landslides since topplings of calcarenite blocks often occur. The rock slopes are moving back and the slope edge draw near to the foundation of the Temple of Hera Lacinia contributing to increase their perilous condition. To assess the role of unsaturated sands in the instability processes, after the compositional and textural analysis of the material, direct shear tests and oedometer tests have been carried out on sand samples initially at the natural state, with low or …
Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico
2013
This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based Real-time Integrated Basin Simulator and Vegetation Generator for Interactive Evolution), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics are resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made w…
AN INTEGRATED SYSTEM FOR THE ANALYSIS OF RAINFALL-TRIGGERED LANDSLIDES
2011
La presente ricerca mira a fornire un sistema integrato per l'analisi delle frane attivate da precipitazioni, sviluppando due diverse metodologie: un'analisi statica per l'individuazione delle zone maggiormente propense a produrre scivolamenti (susceptibility mapping) su scala spaziale regionale, ed un'analisi dinamica per la prevision del dove e quando un evento franoso potrebbe veri carsi, ad una scala spaziale di maggior dettaglio . L'analisi statica comporta lo sviluppo di modelli statistici in grado di stimare la probabilità di eventi franosi, sulla base della correlazione tra fattori predisponenti le frane e gli eventi storici. L'esito dell'analisi è la derivazione di una mappa suscet…
G-CLASS: geosynchronous radar for water cycle science – orbit selection and system design
2019
The mission geosynchronous – continental land atmosphere sensing system (G-CLASS) is designed to study thediurnal water cycle, using geosynchronous radar. Although the water cycle is vital to human society, processes on timescalesless than a day are very poorly observed from space. G-CLASS, using C-band geosynchronous radar, could transform this. Itsscience objectives address intense storms and high resolution weather prediction, and significant diurnal processes such assnow melt and soil moisture change, with societal impacts including agriculture, water resource management, flooding, andlandslides. Secondary objectives relate to ground motion observations for earthquake, volcano, and subs…
Accounting for soil parameter uncertainty in a physically based and distributed approach for rainfall-triggered landslides
2016
In this study we propose a probabilistic approach for coupled distributed hydrological-hillslope stability models that accounts for soil parameters uncertainty at basin scale. The geotechnical and soil retention curve parameters are treated as random variables across the basin and theoretical probability distributions of the Factor of Safety (FS) are estimated. The derived distributions are used to obtain the spatio-temporal dynamics of probability of failure, in terms of parameters uncertainty, conditioned to soil moisture dynamics. The framework has been implemented in the tRIBS-VEGGIE (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator-VEGetation Generator fo…
Hydro-mechanical analysis of volcanic ash slopes during rainfall
2016
Rainfall-induced landslides in volcanic ashes represent a major natural hazard in many regions around the world. Owing to their loose structure, volcanic ash slopes are prone to rainfall-induced landslides. The paper presents a continuum modelling approach for the analysis of wetting-induced instability phenomena at the onset of failure in loose volcanic ash slopes. A numerical simulation of a landslide-prone volcanic slope in Costa Rica is carried out with a two-dimensional hydro-mechanical finite-element slope model. A constitutive model based on the effective stress concept extended to partially saturated conditions is used to reproduce the volcanic ash hydro-mechanical behaviour. The m…
Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method
2016
This paper presents a dynamic fully coupled formulation for saturated and unsaturated soils that undergo large deformations based on material point method. Governing equations are applied to porous material while considering it as a continuum in which the pores of the solid skeleton are filled with water and air. The accuracy of the developed method is tested with available experimental and numerical results. The developed method has been applied to investigate the failure and post-failure behaviour of rapid landslides in unsaturated slopes subjected to rainfall infiltration using two different bedrock geometries that lie below the top soil. The models show different failure and post-failur…
Determining the optimal pixel size of topographical parameters for the prediction of hazardous geomorphological phenomenons of different magnitude: g…
2013
Effects of the foot evolution on the behaviour of slow-moving landslides
2011
The paper presents a time-dependent 2D numerical model which has been developed with the purpose of highlighting the effects of the slope foot evolution on the behaviour of slow-moving landslides. The model allows to quantitatively analyse how foot mass variations can influence the stability and the movement rates of the landslide. The landslide body is modelled as composed of two rigid blocks sliding on two different planes and interacting through a common boundary, which position is assumed fixed during the analysis. A finite difference approach is used to discretize the time. For each time increment, changes in model parameters are allowed, including variations in shearing resistances, g…