Search results for "Lanthanoid Series Elements"
showing 5 items of 15 documents
Relationship between lanthanide contents in aquatic turtles and environmental exposures
2013
International audience; Trace elements released in the environment during agricultural practices can be incorporated and accumulated in biological fluids and tissues of living organisms. The assessment of these exposures were carried out investigating lanthanide distributions in blood and exoskeleton samples collected from Emys trinacris turtle specimens coming from sites with anthropogenic discharge in western and south Sicily, along migration paths of many bird species from Africa to Europe. The data show a significant (Rxy = 0.72; Rxy > 0.67; α = 0.025) linear relationship between the size of turtle specimens and the lanthanide contents in blood lower than 0.4 μg L−1 whereas this relatio…
Syntheses, structures, and magnetic properties of diphenoxo-bridged Cu(II)Ln(III) and Ni(II)(low-spin)Ln(III) compounds derived from a compartmental …
2010
Syntheses, characterization, and magnetic properties of a series of diphenoxo-bridged discrete dinuclear M(II)Ln(III) complexes (M = Cu or Ni, Ln = Ce-Yb) derived from the compartmental Schiff base ligand, H(2)L, obtained on condensation of 3-ethoxysalicylaldehyde with trans-1,2-diaminocyclohexane, are described. Single crystal X-ray structures of eight Cu(II)Ln(III) compounds (Ln = Ce (1), Pr (2), Nd (3), Sm (4), Tb (7), Ho (9), Er (10), and Yb (12)) and three Ni(II)Ln(III) (Ln = Ce (13), Sm (16), and Gd (18)) compounds have been determined. Considering the previously reported structure of the Cu(II)Gd(III) (6) compound (Eur. J. Inorg. Chem. 2005, 1500), a total of twelve structures are di…
Towards peptide-based tunable multistate memristive materials
2021
Development of new memristive hardware is a technological requirement towards widespread neuromorphic computing. Molecular spintronics seems to be a fertile field for the design and preparation of this hardware. Within molecular spintronics, recent results on metallopeptides demonstrating the interaction between paramagnetic ions and the chirality induced spin selectivity effect hold particular promise for developing fast (ns–μs) operation times. [R. Torres-Cavanillas et al., J. Am. Chem. Soc., 2020, DOI: 10.1021/jacs.0c07531]. Among the challenges in the field, a major highlight is the difficulty in modelling the spin dynamics in these complex systems, but at the same time the use of inexp…
Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides
2020
Chirality-induced spin selectivity (CISS), whereby helical molecules polarize the spin of electrical current, is an intriguing effect with potential applications in nanospintronics. In this nascent field, the study of the CISS effect using paramagnetic chiral molecules, which could introduce another degree of freedom in controlling the spin transport, remains so far unexplored. To address this challenge, herein we propose the use of self-assembled monolayers (SAMs) of helical lanthanide-binding peptides. To elucidate the effect of the paramagnetic nuclei, monolayers of the peptide coordinating paramagnetic or diamagnetic ions are prepared. By means of spin-dependent electrochemistry, the CI…
Distribution of YLOID in soil-grapevine system (Vitis vinifera L.) as tool for geographical characterization of agro-food products. A two years case …
2017
The knowledge of a chemistry relationship between the soil and the agricultural products is an important tool for the quality assessment of food. We studied YLOID (Y, La and lanthanoids), recognized as very useful tracers due their coherent and predictable behavior, to trace and evaluate their distribution from soil to the grape in Vitis vinifera L. Because much of the world’s viticulture is based on grafting, and rootstocks have proved affect vine growth, yield, fruit and wine quality, we carried out experimental trials to analyse the YLOID distribution of two different red cultivars, grafted onto six different rootstocks, on the same soil. The YLOID amounts, the relationship Heavy vs Ligh…