Search results for "Laplacian"

showing 10 items of 135 documents

Landesman-Lazer type (p, q)-equations with Neumann condition

2020

We consider a Neumann problem driven by the (p, q)-Laplacian under the Landesman-Lazer type condition. Using the classical saddle point theorem and other classical results of the calculus of variations, we show that the problem has at least one nontrivial weak solution.

Pure mathematicsGeneral MathematicsWeak solution010102 general mathematicsNeumann problemcritical pointsaddle point theoremGeneral Physics and AstronomyType (model theory)01 natural sciences(pq)-LaplacianSaddle point theorem010101 applied mathematicsType conditionSettore MAT/05 - Analisi MatematicaNeumann boundary condition0101 mathematicsLandesman-Lazer type conditionMathematicsActa Mathematica Scientia
researchProduct

Hitchhiker's guide to the fractional Sobolev spaces

2012

AbstractThis paper deals with the fractional Sobolev spaces Ws,p. We analyze the relations among some of their possible definitions and their role in the trace theory. We prove continuous and compact embeddings, investigating the problem of the extension domains and other regularity results.Most of the results we present here are probably well known to the experts, but we believe that our proofs are original and we do not make use of any interpolation techniques nor pass through the theory of Besov spaces. We also present some counterexamples in non-Lipschitz domains.

Pure mathematicsMathematics(all)General MathematicsMathematical proof01 natural sciencesSobolev inequalityFractional LaplacianSobolev embeddingsMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics0101 mathematicsNehari manifoldMathematicsSobolev spaces for planar domains010102 general mathematicsMathematical analysisFractional Sobolev spacesFractional Sobolev spaces; Gagliardo norm; Fractional Laplacian; Nonlocal energy; Sobolev embeddingsGagliardo normNonlocal energyFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsSobolev spaceInterpolation spaceAnalysis of PDEs (math.AP)CounterexampleTrace theoryBull. Sci. Math.
researchProduct

Existence of minimizers for eigenvalues of the Dirichlet-Laplacian with a drift

2015

Abstract This paper deals with the eigenvalue problem for the operator L = − Δ − x ⋅ ∇ with Dirichlet boundary conditions. We are interested in proving the existence of a set minimizing any eigenvalue λ k of L under a suitable measure constraint suggested by the structure of the operator. More precisely we prove that for any c > 0 and k ∈ N the following minimization problem min ⁡ { λ k ( Ω ) : Ω quasi-open set , ∫ Ω e | x | 2 / 2 d x ≤ c } has a solution.

Pure mathematicsMinimization of eigenvalueStructure (category theory)01 natural sciencesMeasure (mathematics)symbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Weighted Sobolev spaces0101 mathematicsComputingMilieux_MISCELLANEOUSEigenvalues and eigenvectorsMathematicsApplied MathematicsOperator (physics)010102 general mathematicsMinimization problemMathematics::Spectral Theory010101 applied mathematicsDirichlet laplacianDirichlet boundary conditionDirichlet–Laplacian with a driftsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Positive solutions for the Neumann p-Laplacian

2017

We examine parametric nonlinear Neumann problems driven by the p-Laplacian with asymptotically ( $$p-1$$ )-linear reaction term f(z, x) (as $$x\rightarrow +\infty $$ ). We determine the existence, nonexistence and minimality of positive solutions as the parameter $$\lambda >0$$ varies.

Pure mathematicsPositive solutions Nonlinear regularity Nonlinear maximum principle Nonlinear Picone’s identityGeneral Mathematics010102 general mathematicsMathematical analysisLambda01 natural sciencesTerm (time)010101 applied mathematicsNonlinear systemSettore MAT/05 - Analisi Matematicap-Laplacian0101 mathematicsParametric statisticsMathematics
researchProduct

Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential

2020

AbstractWe consider a parametric nonlinear Robin problem driven by the negativep-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation$$f(z,\cdot )$$f(z,·)is$$(p-1)$$(p-1)-sublinear and then the case where it is$$(p-1)$$(p-1)-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter$$\lambda \in {\mathbb {R}}$$λ∈Rwhich we specify exactly in terms of principal eigenvalue of the differential operator.

Pure mathematicsSublinear functionPerturbation (astronomy)Sublinear and superlinear perturbationLambda01 natural sciencesNonlinear Picone’s identitySettore MAT/05 - Analisi MatematicaUniqueness0101 mathematicsMathematical PhysicsEigenvalues and eigenvectorsPositive solutionsMathematicsNonlinear regularityAlgebra and Number TheoryMinimal positive solution010102 general mathematicsDifferential operator010101 applied mathematicsNonlinear systemp-LaplacianIndefinite potentialUniquenessNonlinear maximum principleAnalysis
researchProduct

Neumann p-Laplacian problems with a reaction term on metric spaces

2020

We use a variational approach to study existence and regularity of solutions for a Neumann p-Laplacian problem with a reaction term on metric spaces equipped with a doubling measure and supporting a Poincare inequality. Trace theorems for functions with bounded variation are applied in the definition of the variational functional and minimizers are shown to satisfy De Giorgi type conditions.

Pure mathematicsTrace (linear algebra)Applied MathematicsGeneral Mathematics010102 general mathematicsPoincaré inequalityType (model theory)p-Laplacian operator Measure metric spaces Minimalp-weak upper gradient Minimizer01 natural sciencesMeasure (mathematics)010305 fluids & plasmasTerm (time)symbols.namesakeMetric spaceSettore MAT/05 - Analisi Matematica0103 physical sciencesBounded variationsymbolsp-Laplacian0101 mathematicsMathematics
researchProduct

Multiplicity of Solutions to Elliptic Problems Involving the 1-Laplacian with a Critical Gradient Term

2017

Abstract In the present paper we study the Dirichlet problem for an equation involving the 1-Laplacian and a total variation term as reaction.We prove a strong multiplicity result. Namely, we show that for any positive Radon measure concentrated in a set away from the boundary and singular with respect to a certain capacity, there exists an unbounded solution, and measures supported on disjoint sets generate different solutions.These results can be viewed as the analogue for the 1-Laplacian operator of some known multiplicity results which were first obtained by Ireneo Peral, to whom this article is dedicated, and his collaborators.

Pure mathematicsboundary-value problemsGeneral Mathematics010102 general mathematicsStatistical and Nonlinear PhysicsMultiplicity (mathematics)Partial differential equations; 1-Laplacian; multiplicity; boundary-value problemsPartial differential equations1-Laplacian01 natural sciences010101 applied mathematicsmultiplicity0101 mathematicsLaplace operatorMathematicsAdvanced Nonlinear Studies
researchProduct

Infinitely many weak solutions for a mixed boundary value system with (p_1,…,p_m)-Laplacian

2014

The aim of this paper is to prove the existence of infinitely many weak solu- tions for a mixed boundary value system with (p1, . . . , pm)-Laplacian. The approach is based on variational methods.

Pure mathematicscritical pointsinfinitely many solutionsApplied MathematicsMathematical analysisvariational methodsBoundary valuesCritical points variational methods infinitely many solutions p-Laplacian.$p$-laplacianSettore MAT/05 - Analisi MatematicaQA1-939Laplace operatorMathematicsMathematics
researchProduct

$C^{1,��}$ regularity for the normalized $p$-Poisson problem

2017

We consider the normalized $p$-Poisson problem $$-��^N_p u=f \qquad \text{in}\quad ��.$$ The normalized $p$-Laplacian $��_p^{N}u:=|D u|^{2-p}��_p u$ is in non-divergence form and arises for example from stochastic games. We prove $C^{1,��}_{loc}$ regularity with nearly optimal $��$ for viscosity solutions of this problem. In the case $f\in L^{\infty}\cap C$ and $p>1$ we use methods both from viscosity and weak theory, whereas in the case $f\in L^q\cap C$, $q>\max(n,\frac p2,2)$, and $p>2$ we rely on the tools of nonlinear potential theory.

Pure mathematicsnormalized p-laplacianregularitymathematicsp-poisson problemApplied MathematicsGeneral Mathematics010102 general mathematicsta111α01 natural sciences35J60 35B65 35J92Potential theory010101 applied mathematicslocal C1Nonlinear systemViscosityviscosityFOS: Mathematics0101 mathematicsPoisson problemMathematicsAnalysis of PDEs (math.AP)
researchProduct

Multiple solutions for strongly resonant Robin problems

2018

We consider nonlinear (driven by the p†Laplacian) and semilinear Robin problems with indefinite potential and strong resonance with respect to the principal eigenvalue. Using variational methods and critical groups, we prove four multiplicity theorems producing up to four nontrivial smooth solutions.

Regularity theoryPure mathematicsSemilinear equationStrong resonanceGeneral Mathematics010102 general mathematicsp-LaplacianMultiplicity (mathematics)Mathematics::Spectral Theory01 natural sciences010101 applied mathematicsNonlinear systemCritical groupSettore MAT/05 - Analisi Matematicap-Laplacian0101 mathematicsLaplace operatorEigenvalues and eigenvectorsCritical groupMathematics
researchProduct