Search results for "Laplacian"

showing 5 items of 135 documents

Location of solutions for quasi-linear elliptic equations with general gradient dependence

2017

Existence and location of solutions to a Dirichlet problem driven by $(p,q)$-Laplacian and containing a (convection) term fully depending on the solution and its gradient are established through the method of subsolution-supersolution. Here we substantially improve the growth condition used in preceding works. The abstract theorem is applied to get a new result for existence of positive solutions with a priori estimates.

subsolution-supersolutionGradient dependenceApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEs$(pQuasi-linear elliptic equationq)$-laplacian01 natural sciences010101 applied mathematics(p q)-laplacian; Gradient dependence; positive solution; Quasi-linear elliptic equations; subsolution-supersolution; Applied Mathematicspositive solutionSettore MAT/05 - Analisi MatematicaQA1-939Quasi linear0101 mathematicsquasi-linear elliptic equationsMathematics(p q)-laplacianMathematics
researchProduct

On elliptic equations involving the 1-Laplacian operator

2018

El objetivo de esta tesis doctoral es dar a conocer los resultados obtenidos sobre existencia, unicidad y regularidad de las soluciones de diferentes ecuaciones elípticas regidas por el operador 1-laplaciano. El primer capítulo está dedicado al estudio de la ecuación - div (Du/|Du|) + g(u) |Du| = f(x) en un subconjunto abierto y acotado U de R^N con frontera Lipschitz, con la condición de Dirichlet u=0 en la frontera, tomando una función f positiva y siendo g una función real, continua y positiva. Por un lado, obtenemos soluciones no acotadas cuando el dato f pertenece al espacio de Marcinkiewicz L^{N,\infty}(U), por lo que debemos introducir la definición apropiada para este tipo de soluci…

total variation termdynamical boundary conditionsl-laplacian operatornonlinear elliptic equations
researchProduct

Equivalence of viscosity and weak solutions for a $p$-parabolic equation

2019

AbstractWe study the relationship of viscosity and weak solutions to the equation $$\begin{aligned} \smash {\partial _{t}u-\varDelta _{p}u=f(Du)}, \end{aligned}$$ ∂ t u - Δ p u = f ( D u ) , where $$p>1$$ p > 1 and $$f\in C({\mathbb {R}}^{N})$$ f ∈ C ( R N ) satisfies suitable assumptions. Our main result is that bounded viscosity supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower semicontinuity of weak supersolutions when $$p\ge 2$$ p ≥ 2 .

viscosity solutionosittaisdifferentiaaliyhtälötPure mathematics35K92 35J60 35D40 35D30 35B51Mathematics::Analysis of PDEscomparison principleweak solutionparabolic p-LaplacianViscosityMathematics (miscellaneous)Mathematics - Analysis of PDEsBounded functionFOS: Mathematicsgradient termEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Hölder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian

2018

In this paper, we study an evolution equation involving the normalized [Formula: see text]-Laplacian and a bounded continuous source term. The normalized [Formula: see text]-Laplacian is in non-divergence form and arises for example from stochastic tug-of-war games with noise. We prove local [Formula: see text] regularity for the spatial gradient of the viscosity solutions. The proof is based on an improvement of flatness and proceeds by iteration.

viscosity solutionsApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysisparabolic01 natural sciencesNoise (electronics)non-homogeneouslocal C-alpha regularityTerm (time)010101 applied mathematicsViscosityBounded functionNon homogeneousEvolution equationp-Laplacian0101 mathematicsnormalized p-LaplacianFlatness (mathematics)MathematicsCommunications in Contemporary Mathematics
researchProduct

Remarks on regularity for p-Laplacian type equations in non-divergence form

2018

We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity solutions in the full range $\gamma>-1$ and $p>1$, and provide local $W^{2,2}$ estimates in the restricted cases where $p$ is close to 2 and $\gamma$ is close to 0.

viscosity solutionsintegrability of second derivativesType (model theory)01 natural sciencesDivergencelocal C1ViscosityMathematics - Analysis of PDEsFOS: Mathematicspartial differential equations0101 mathematicsMathematicsMathematical physicsosittaisdifferentiaaliyhtälötα regularityApplied Mathematics010102 general mathematicsta111p-Laplacianlocal C1α regularityviskositeettiDegenerate equation35J60 35B65 35J92010101 applied mathematicsviscosityp-LaplacianAnalysisAnalysis of PDEs (math.AP)Journal of Differential Equations
researchProduct