Search results for "Laplacian"
showing 10 items of 135 documents
The fractional Calderón problem: Low regularity and stability
2017
The Calder\'on problem for the fractional Schr\"odinger equation was introduced in the work \cite{GSU}, which gave a global uniqueness result also in the partial data case. This article improves this result in two ways. First, we prove a quantitative uniqueness result showing that this inverse problem enjoys logarithmic stability under suitable a priori bounds. Second, we show that the results are valid for potentials in scale-invariant $L^p$ or negative order Sobolev spaces. A key point is a quantitative approximation property for solutions of fractional equations, obtained by combining a careful propagation of smallness analysis for the Caffarelli-Silvestre extension and a duality argumen…
C1,α-regularity for variational problems in the Heisenberg group
2017
We study the regularity of minima of scalar variational integrals of $p$-growth, $1<p<\infty$, in the Heisenberg group and prove the H\"older continuity of horizontal gradient of minima.
Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities
2018
We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with varying probabilities defined in $\Omega\subset \mathbb R^n$. The method of the proof is based on a game-theoretic idea to estimate the value of a related game defined in $\Omega\times \Omega$ via couplings.
Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type
2018
Let $\mathscr{L}$ be a smooth second-order real differential operator in divergence form on a manifold of dimension $n$. Under a bracket-generating condition, we show that the ranges of validity of spectral multiplier estimates of Mihlin--H\"ormander type and wave propagator estimates of Miyachi--Peral type for $\mathscr{L}$ cannot be wider than the corresponding ranges for the Laplace operator on $\mathbb{R}^n$. The result applies to all sub-Laplacians on Carnot groups and more general sub-Riemannian manifolds, without restrictions on the step. The proof hinges on a Fourier integral representation for the wave propagator associated with $\mathscr{L}$ and nondegeneracy properties of the sub…
Regularity properties of tug-of-war games and normalized equations
2017
Variational versus pseudomonotone operator approach in parameter-dependent nonlinear elliptic problems
2013
We study the existence of nontrivial solutions of parameter-dependent quasilinear elliptic Dirichlet problems of the form $-\Delta u = \lambda f(u)$ in $\Omega$, $u = 0$ on $\partial\Omega$, in a bounded domain $\Omega$ with sufficiently smooth boundary, where $\lambda$ is a real parameter and $\Delta_p$ denotes the p-Laplacian. Recently the authors obtained multiplicity results by employing an abstract localization principle of critical points of functional of the form $\Phi-\lambda\Psi$ on open subleveis of $\Phi$, i.e., of sets of the form $\Phi^{-1}(-\infty,r)$, combined with differential inequality techniques and topological arguments. Unlike in those recent papers by the authors, the …
Gradient nonlinear elliptic systems driven by a (p,q)-laplacian operator
2017
In this paper, using variational methods and critical point theorems, we prove the existence of multiple weak solutions for a gradient nonlinear Dirichlet elliptic system driven by a (p, q)-Laplacian operator.
Singular (p, q)-equations with superlinear reaction and concave boundary condition
2020
We consider a parametric nonlinear elliptic problem driven by the sum of a p-Laplacian and of a q-Laplacian (a (Formula presented.) -equation) with a singular and (Formula presented.) -superlinear reaction and a Robin boundary condition with (Formula presented.) -sublinear boundary term (Formula presented.). So, the problem has the combined effects of singular, concave and convex terms. We look for positive solutions and prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter varies.
Existence of two solutions for singular Φ-Laplacian problems
2022
AbstractExistence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by theΦ\Phi-Laplacian operator, and the reaction term can be nonmonotone. The main tools employed are the local minimum theorem and the Mountain pass theorem, together with the truncation technique. GlobalC1,τ{C}^{1,\tau }regularity of solutions is also investigated, chiefly viaa prioriestimates and perturbation techniques.
On the Sub-Supersolution Approach for Dirichlet Problems driven by a (p(x), q(x))-Laplacian Operator with Convection Term
2021
The method of sub and super-solution is applied to obtain existence and location of solutions to a quasilinear elliptic problem with variable exponent and Dirichlet boundary conditions involving a nonlinear term f depending on solution and on its gradient. Under a suitable growth condition on the convection term f, the existence of at least one solution satisfying a priori estimate is obtained.