Search results for "Lasso"
showing 10 items of 110 documents
LA SINDROME DA IPOPERISTALTISMO NEL NEONATO. A proposito di un caso clinico associato a malrotazione, intestino corto, malassorbimento
1988
Viene descritto un caso di una Sindrome caratterizzata da ipopèeristaltismo, intestino corto, malassorbimento
Vertical distribution of two sympatric labrid fishes in the Western Mediterranean and Eastern Atlantic rocky subtidal: local shore topography does ma…
2011
Changes in the shore topography (e.g. slope) occur at a scale of hundreds of meters in several locations in the Lusitanian and the Mediterranean Sea provinces. We tested whether differences in the bottom inclination might affect the vertical distribution patterns of two sympatric coastal labrid fishes, the rainbow wrasse Coris julis and the ornate wrasse Thalassoma pavo. Visual censuses were used to determine the distribution and abundance of these labrid species in high (‡30� ) and low (£3� ) slope rocky substrates covered by brown macroalgae and at two different depths (shallow, 4‐7 m, and deep 14‐20 m). Pectoral fin aspect ratio was used as an estimate of swimming performance to potentia…
Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals
2022
We extend the results of De Luca et al. (2021) to inference for linear regression models based on weighted-average least squares (WALS), a frequentist model averaging approach with a Bayesian flavor. We concentrate on inference about a single focus parameter, interpreted as the causal effect of a policy or intervention, in the presence of a potentially large number of auxiliary parameters representing the nuisance component of the model. In our Monte Carlo simulations we compare the performance of WALS with that of several competing estimators, including the unrestricted least-squares estimator (with all auxiliary regressors) and the restricted least-squares estimator (with no auxiliary reg…
A probabilistic compressive sensing framework with applications to ultrasound signal processing
2019
Abstract The field of Compressive Sensing (CS) has provided algorithms to reconstruct signals from a much lower number of measurements than specified by the Nyquist-Shannon theorem. There are two fundamental concepts underpinning the field of CS. The first is the use of random transformations to project high-dimensional measurements onto a much lower-dimensional domain. The second is the use of sparse regression to reconstruct the original signal. This assumes that a sparse representation exists for this signal in some known domain, manifested by a dictionary. The original formulation for CS specifies the use of an l 1 penalised regression method, the Lasso. Whilst this has worked well in l…
A penalized approach to covariate selection through quantile regression coefficient models
2019
The coefficients of a quantile regression model are one-to-one functions of the order of the quantile. In standard quantile regression (QR), different quantiles are estimated one at a time. Another possibility is to model the coefficient functions parametrically, an approach that is referred to as quantile regression coefficients modeling (QRCM). Compared with standard QR, the QRCM approach facilitates estimation, inference and interpretation of the results, and generates more efficient estimators. We designed a penalized method that can address the selection of covariates in this particular modelling framework. Unlike standard penalized quantile regression estimators, in which model selec…
Tailoring sparse multivariable regression techniques for prognostic single-nucleotide polymorphism signatures.
2011
When seeking prognostic information for patients, modern technologies provide a huge amount of genomic measurements as a starting point. For single-nucleotide polymorphisms (SNPs), there may be more than one million covariates that need to be simultaneously considered with respect to a clinical endpoint. Although the underlying biological problem cannot be solved on the basis of clinical cohorts of only modest size, some important SNPs might still be identified. Sparse multivariable regression techniques have recently become available for automatically identifying prognostic molecular signatures that comprise relatively few covariates and provide reasonable prediction performance. For illus…
The conditional censored graphical lasso estimator
2020
© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many applied fields, such as genomics, different types of data are collected on the same system, and it is not uncommon that some of these datasets are subject to censoring as a result of the measurement technologies used, such as data generated by polymerase chain reactions and flow cytometer. When the overall objective is that of network inference, at possibly different levels of a system, information coming from different sources and/or different steps of the analysis can be integrated into one model with the use of conditional graphical models. In this paper, we develop a doubly penalized inferential procedure for…
Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models
2013
Summary Sparsity is an essential feature of many contemporary data problems. Remote sensing, various forms of automated screening and other high throughput measurement devices collect a large amount of information, typically about few independent statistical subjects or units. In certain cases it is reasonable to assume that the underlying process generating the data is itself sparse, in the sense that only a few of the measured variables are involved in the process. We propose an explicit method of monotonically decreasing sparsity for outcomes that can be modelled by an exponential family. In our approach we generalize the equiangular condition in a generalized linear model. Although the …
A differential-geometric approach to generalized linear models with grouped predictors
2016
We propose an extension of the differential-geometric least angle regression method to perform sparse group inference in a generalized linear model. An efficient algorithm is proposed to compute the solution curve. The proposed group differential-geometric least angle regression method has important properties that distinguish it from the group lasso. First, its solution curve is based on the invariance properties of a generalized linear model. Second, it adds groups of variables based on a group equiangularity condition, which is shown to be related to score statistics. An adaptive version, which includes weights based on the Kullback-Leibler divergence, improves its variable selection fea…
Model selection in linear mixed-effect models
2019
Linear mixed-effects models are a class of models widely used for analyzing different types of data: longitudinal, clustered and panel data. Many fields, in which a statistical methodology is required, involve the employment of linear mixed models, such as biology, chemistry, medicine, finance and so forth. One of the most important processes, in a statistical analysis, is given by model selection. Hence, since there are a large number of linear mixed model selection procedures available in the literature, a pressing issue is how to identify the best approach to adopt in a specific case. We outline mainly all approaches focusing on the part of the model subject to selection (fixed and/or ra…