Search results for "Latitude"
showing 10 items of 210 documents
Geographic and temporal variations in turbulent heat loss from lakes : A global analysis across 45 lakes
2018
Heat fluxes at the lake surface play an integral part in determining the energy budget and thermal structure in lakes, including regulating how lakes respond to climate change. We explore patterns in turbulent heat fluxes, which vary across temporal and spatial scales, using in situ high-frequency monitoring data from 45 glob- ally distributed lakes. Our analysis demonstrates that some of the lakes studied follow a marked seasonal cycle in their turbulent surface fluxes and that turbulent heat loss is highest in larger lakes and those situated at low latitude. The Bowen ratio, which is the ratio of mean sensible to mean latent heat fluxes, is smaller at low lati- tudes and, in turn, the rel…
Climate indices for the Baltic states from principal component analysis
2017
Abstract. We used principal component analysis (PCA) to derive climate indices that describe the main spatial features of the climate in the Baltic states (Estonia, Latvia, and Lithuania). Monthly mean temperature and total precipitation values derived from the ensemble of bias-corrected regional climate models (RCMs) were used. Principal components were derived for the years 1961–1990. The first three components describe 92 % of the variance in the initial data and were chosen as climate indices in further analysis. Spatial patterns of these indices and their correlation with the initial variables were analyzed, and it was detected (based on correlation coefficient between principal compon…
Downscaling of American National Aeronautics and Space Administration (NASA) daily air temperature in Sicily, Italy, and effects on crop reference ev…
2018
Abstract Air temperature (Ta) is one of the key factors in agro-hydrological studies including estimation of crop reference evapotranspiration (ET0), which is crucial for irrigation water management and sustainability of agro-ecosystem productivity. Because direct measurements of ET0 are difficult, expensive and time consuming, the use of physically based or empirical approaches linked to meteorological information is often preferred. The Prediction of Worldwide Energy Resource project developed by the American National Aeronautics and Space Administration (POWER-NASA) provides daily meteorological information on a 1° latitude by 1° longitude grid. Despite the poor spatial resolution charac…
Using Optical and Thermal Data for Tracking Snowmelt Processes in Alpine Area
2019
Alpine catchments represent a fundamental reservoir of fresh water at midlatitude. Remote sensing offers the opportunity to estimate snow properties in the optical, thermal and microwave domains. In particular, the possibility to estimate snow density from remote sensing is relevant and still represents a great challenge for the remote sensing scientific community. Since changes of snow density and liquid water content occur continuously in the snowpack, spatial and temporal patterns of optical and thermal data can give information about snowmelt processes. The main goal of this study is to evaluate if snow thermal inertia can be an indicator of snowmelt processes and to evaluate its relati…
Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
2020
Summarization: The extent and impact of climate‐related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter‐Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events co…
Mapping land surface emissivity from NDVI: Application to European, African, and South American areas
1996
Thermal infrared emissivity is an important parameter both for surface characterization and for atmospheric correction methods. Mapping the emissivity from satellite data is therefore a very important question to solve. The main problem is the coupling of the temperature and emissivity effects in the thermal radiances. Several methods have been developed to obtain surface emissivity from satellite data. In this way we propose a theoretical model that relates the emissivity to the NDVI (normalized difference vegetation index) of a given surface and explains the experimental behavior observed by van de Griend and Owe. We can use it to obtain the emissivity in any thermal channel, but in this …
Numerical evidence for thermohaline circulation reversals during the Maastrichtian
2005
[1] The sensitivity of the Maastrichtian thermohaline circulation to the opening/closing of marine communications between the Arctic and North Pacific oceans is investigated through a set of numerical experiments using the model CLIMBER-2 (Earth Model of Intermediate Complexity). We show here that the opening or closing of an Arctic-Pacific marine gateway induces transitions between different equilibrium states of the thermohaline circulation. Sensitivity tests of the inferred modes of thermohaline circulation to atmospheric CO2 level changes have also been explored. An abrupt switch in deep convection from high northern to high southern latitudes, a change consistent with isotopic evidence…
Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series
2011
International audience; In mountain forest ecosystems where elevation gradients are prominent, temperature gradient-based phonological variability can be high. However, there are few studies that assess the capability of remote sensing observations to monitor ecosystem phenology along elevation gradients, despite their relevance under climate change. We investigated the potential of medium resolution remotely sensed data to monitor the elevation variations in the seasonal dynamics of a temperate deciduous broadleaf forested ecosystem. Further, we explored the impact of elevation on the onset of spring leafing. This study was based on the analysis of multi-annual time-series of VEGETATION da…
2021
Abstract. The collection of modern, spatially extensive pollen data is important for the interpretation of fossil pollen assemblages and the reconstruction of past vegetation communities in space and time. Modern datasets are readily available for percentage data but lacking for pollen accumulation rates (PARs). Filling this gap has been the motivation of the pollen monitoring network, whose contributors monitored pollen deposition in modified Tauber traps for several years or decades across Europe. Here we present this monitoring dataset consisting of 351 trap locations with a total of 2742 annual samples covering the period from 1981 to 2017. This dataset shows that total PAR is influence…
Orbital forcing of tree-ring data
2012
Based on an analysis of maximum latewood density data from northern Scandinavia, along with published dendrochronological records, this study finds evidence that previous tree-ring-reliant reconstructions of large-scale near-surface air temperature underestimated long-term pre-industrial warmth during Medieval and Roman times. Solar insolation changes, resulting from long-term oscillations of orbital configurations1, are an important driver of Holocene climate2,3. The forcing is substantial over the past 2,000 years, up to four times as large as the 1.6 W m−2 net anthropogenic forcing since 1750 (ref. 4), but the trend varies considerably over time, space and with season5. Using numerous hi…